
www.manaraa.com

Retrospective Theses and Dissertations Iowa State University Capstones, Theses and
Dissertations

1-1-2002

Computer-aided design of an ergonomic computer mouse Computer-aided design of an ergonomic computer mouse

Mohd Rapid Arifin
Iowa State University

Follow this and additional works at: https://lib.dr.iastate.edu/rtd

Recommended Citation Recommended Citation
Arifin, Mohd Rapid, "Computer-aided design of an ergonomic computer mouse" (2002). Retrospective
Theses and Dissertations. 19785.
https://lib.dr.iastate.edu/rtd/19785

This Thesis is brought to you for free and open access by the Iowa State University Capstones, Theses and
Dissertations at Iowa State University Digital Repository. It has been accepted for inclusion in Retrospective Theses
and Dissertations by an authorized administrator of Iowa State University Digital Repository. For more information,
please contact digirep@iastate.edu.

http://lib.dr.iastate.edu/
http://lib.dr.iastate.edu/
https://lib.dr.iastate.edu/rtd
https://lib.dr.iastate.edu/theses
https://lib.dr.iastate.edu/theses
https://lib.dr.iastate.edu/rtd?utm_source=lib.dr.iastate.edu%2Frtd%2F19785&utm_medium=PDF&utm_campaign=PDFCoverPages
https://lib.dr.iastate.edu/rtd/19785?utm_source=lib.dr.iastate.edu%2Frtd%2F19785&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:digirep@iastate.edu

www.manaraa.com

Computer-aided design of an ergonomic computer

mouse

by

Mohd Rapid Arifin

A thesis submitted to the graduate faculty

in partial fulfillment of the requirements for the degree of

MASTER OF SCIENCE

Major: Mechanical Engineering

Program of Study Committee:

Abir Qamhiyah, Co-major Professor
Donald Flugrad, Co-major Professor

Carolina Cruz-Neira

Iowa State University

Ames, Iowa

2002

Copyright© Mohd Rapid Arifin, 2002. All rights reserved.

www.manaraa.com

ii

Graduate College
Iowa State University

This is to certify that the master's thesis of

Mohd Rapid Arifin

has met the thesis requirements of Iowa State University

Signatures have been redacted for privacy

www.manaraa.com

iii

TABLE OF CONTENTS
LIST OF FIGURES

LIST OF TABLES

ACKNOWLEDGEMENTS

ABSTRACT

CHAPTER 1: INTRODUCTION
Ergonomics
Project Objective
Project Steps
Literature Review
Computer Mice
Summary

CHAPTER 2: SIGNAL TRANSDUCER/SENSOR
New Sensor
Piezoresistive/Piezoelectric Sensors
FlexiForce™ Sensors
Summary

CHAPTER 3: MICROCONTROLLER
Elements of a USB Microcontroller
PIC16C745 8-Bit CMOS USB Microcontroller
PIC16C745 Instructions (OPCODE)
PIC16C745 Memory
PIC16C745 Input/Output (I/0) Ports
PIC16C745 Analog-to-Digital Converter
PIC16C745 Firmware
Summary

CHAPTER 4: DATA TRANSFER
Basic Definitions
Transfer Basics
Software Interfacing
Hardware Interfacing
Summary

CHAPTER 5: HOST COMPUTER
Universal Serial Bus (USB)
Enumeration
Hubs
Device Driver
Human Interface Device (HID) Driver
Device Manager
Summary

V

vii

viii

ix

1
2
3
3
4
5
9

10
13
14
14
18

19
20
21
25
26
28
29
32
33

35
35
39
45
49
52

53
53
59
61
64
65
67
67

www.manaraa.com

CHAPTER 6: FINAL ASSEMBLY
Sensor
Excitation Circuit
Microcontroller Circuit
Internal Box
Cover Plate
Switch Box
Actuator
External Box
Main Shell
Assembly
Device Driver
Microcontroller Firmware
Device Testing
Manufacturing
Part List

iv

APPENDIX A: PIC16C745 Block Diagram

APPENDIX B: PIC16C745 Pin Description

APPENDIX C: PIC16C745 Data Memory Map

APPENDIX D: MICROCONTROLLER FIRMWARE
Usb main.asm

APPENDIX E: MICROCONTROLLER FIRMWARE
Usb ch9.asm

APPENDIX F: MICROCONTROLLER FIRMWARE
Hidclass.asm

APPENDIX G: MICROCONTROLLER FIRMWARE
Descript.asm

APPENDIX H: MICROCONTROLLER FIRMWARE
Usb defs.inc

APPENDIX I: MICROCONTROLLER FIRMWARE
PIC16C745.lkr

REFERENCE LIST

VITA

68
68
70
71
72
75
76
78
80
82
86
88
88
90
91
94

95

96

98

99

109

137

142

150

158

159

161

www.manaraa.com

V

LIST OF FIGURES

Figure 1-1 Signal Flow 4

Figure 1-2 Interactive Input Device Flowchart 5

Figure 1-3 Mechanical Hardware of Opto-mechanical 7
Mouse

Figure 1-4 Mouse Controlling System 8

Figure 2-1 Opto-mechanical Details 10

Figure 2-2 Roller Ball, Shaft and Disk 10

Figure 2-3 Pulses in Phototransistors 11

Figure 2-4 Pulse Signal in Phototransistors 12

Figure 2-5 Rocker Switch 13

Figure 2-6 Dimension of the Rocker Switch 13

Figure 2-7 FlexiForce™ Sensors 15

Figure 2-8 Side View of FlexiForceTM Sensors 15

Figure 2-9 Sensor's Excitation Circuit 18

Figure 3-1 PIC16C745 21

Figure 3-2 PIC16C745 Pin Diagram 23

Figure 3-3 Crystal/Resonator Oscillator 23

Figure 3-4 In-Circuit Serial Programming (ICSP) 24

Figure 3-5 Harvard vs. Von-Neumann Architecture 27

Figure 3-6 Firmware Development 33

Figure 4-1 Typical USB Bus Transaction 41

Figure 4-2 Transfer Flowchart 42

Figure 4-3 PIC16C745 USB Software Interfacing 46

Figure 4-4 USB Connector: Upstream and Downstream 50

Figure 4-5 Transceiver Regulator 52

Figure 6-1 Placement of the Sensors 68

Figure 6-2 Excitation Circuit 70

Figure 6-3 Reference Voltage Circuit 71

Figure 6-4 Microcontroller Circuit 72

Figure 6-5 3-D View of the Internal Box 73

www.manaraa.com

·vi

Figure 6-6 Top View of the Internal Box 73

Figure 6-7 Front View of the Internal Box 74

Figure 6-8 Side View of the Internal Box 74

Figure 6-9 3-D View of the Cover Plate 75

Figure 6-10 Top View of the Cover Plate 75

Figure 6-11 Side View cf the Cover Plate 76

Figure 6-12 Switch Box with the Internal Box 76

Figure 6-13 3-D View of the Switch Box 76

Figure 6-14 Top View of the Switch Box 77

Figure 6-15 Front View of the Switch Box 77

Figure 6-16 Side View of the Switch Box 78

Figure 6-17 3-D View of the Actuator 79

Figure 6-18 Top View of the Actuator 79

Figure 6-19 Side View of the Actuator 80

Figure 6-20 3-D View of the External Box 80

Figure 6-21 Top View of the External Box 81

Figure 6-22 Front View of the External Box 81

Figure 6-23 Side View of the External Box 82

Figure 6-24 Method Used by Weimer to Meas'-.lre 83
the Dimension of the Grasp

Figure 6-25 3-D View of the Main Shell 83

Figure 6-26 Top View of the Main Shell 84

Figure 6-27 Front View of the Main Shell 84

Figure 6-28 Side View of the Main Shell 85

Figure 6-29 Orientation of the Fingers 85

Figure 6-30 Internal Core Assembly 87

Figure 6-31 Overall Assembly 87

Figure 6-32 Programming Connection 88

Figure 6-33 Prototype Circuit Board (PCB) 91

Figure 6-34 Ceramic Resistors and Capacitors 92

Figure 6-35 Chip Resistors and Capacitors 92

www.manaraa.com

vii

LIST OF TABLES

Table 2-1 State Table for Counterclockwise Motion 12
of Mouse Wheel

Table 2-2 State Table for Clockwise Motion of 12
Mouse Wheel

Table 3-1 OPCODE Field Descriptions

Table 3-2 PIC16C745 Instruction Set (OPCODE)

Table 3-3 TAD vs. Device Operating Frequencies

Table 4-1 USB Conductor

Table 6-1 Part List

25

25

31

49

94

www.manaraa.com

viii

ACKNOWLEDGEMENTS

To God who gave me a chance to live in this world. He

blessed me with a one-in-a-lifetime chance to come here and

study with the best.

To my mom and dad who have been wonderful to me in my

entire life. Without them I would not be here in first place.

And to my entire family who give me a lovely support since I

was a kid. Without them I would not be as capable as I am

right now.

To all my professors and instructors, including those who

taught me during my undergraduate and graduate level,

especially to the Program of Study committee members, Dr Abir

Qamhiyah, Dr Donald Flugrad, Dr Carolina Cruz-Neira and Dr

Greg Luecke. They gave me a chance that I will not forget for

my whole life.

To all my co-workers, classmates, housemates, staff in

Mechanical Engineering Department and Virtual Reality and

Application Center (VRAC), and last but not least to all my

students in ME 436 Heat Transfer Lab. They taught me what a

word 'friendship' and 'honest' means and it means a lot to me.

It's been a privilege to work and be in a same room with these

people.

May the God bless all the people I have mentioned above.

www.manaraa.com

ix

ABSTRACT

The primary purpose of this thesis is to explain a device

which could be used as an alternative for a computer mouse.

Instead of using a regular roller found in an ordinary mouse,

the device uses a pressure sensitive sensor to control the

computer cursor on the monitor.

The device is developed mainly for a personal computer

with Universal Serial Bus (USB) capability. The computer

should have an operating system of Microsoft Windows 98 or

newer. The device does not need any additional driver, and it

has a USB hot-plug-and-play feature. It uses a Human Interface

Device {HID) driver provided by Windows.

The device mainly has two buttons (right and left) and is

approximately 4" by 3" by 2" in size. Users can press their

fingers on to the device to control the cursor. The device

will be small enough to be fit inside a person's palm. The

area has four pressure sensors used to move the cursor to the

left, right, upward and downward. The user can control some

parameters, such as cursor movement rate, by just controlling

the amount of force pressed on that area. The device will be

made from a soft material with a hard box inside. All the

necessary components will be placed inside the box. Only the

sensors are outside the box, so that the user can control the

sensors by squeezing the device. This would make it

comfortable for users to operate the device.

www.manaraa.com

1

CHAPTER 1:
INTRODUCTION

Often engineers find themselves working with their

desktop or laptop in their project presentation. Most of the

presentations have something to do with engineering drawing,

and they have to go back and forth from their standing spot to

the desk just to move the computer cursor around. The

engineering application program, such as AutoCAD and IDEAS are

so difficult to operate without a computer mouse.

It is important to have a device, which works like a

regular mouse, but can be operated even without a flat surface

to slide the mouse on. This thesis will explain on how such a

device can be designed.

Chapter 1 of this thesis covers the basics of the

project, some definitions, and it also explains the basics of

how a regular mouse works. It will give readers some idea

about the similarities and differences between a mouse and

this new device. Chapter 2 covers sensor selection of the new

device and how it differs from the original design of a

regular mouse. Chapter 3 explains the intelligence part of the

project, or microcontroller. Chapter 4 presents how the data

is transferred from the device to the host computer and also

some signal conditioning. Most of the signal conditioning is

being done by the microcontroller. Chapter 5 discusses the

responsibility of the host computer, how the data is handled

and some discussion about Universal Serial Bus (USB). The

final chapter of this thesis, chapter 6, presents the final

assembly of the new device and summarizes the final

specifications of the device.

www.manaraa.com

2

Ergonomics

The term ergonomics is based upon two Greek words: ergos

means 'work' and nomos means 'the study of' or 'the principles

of'. In other words, the ergonomics is the field of study that

examines human behavioral, psychological and physiological

capabilities and limitations [l]. From these capabilities and

limitations, the new product can then be designed, or

modified, to maximize productivity, worker comfort and overall

efficiency. The primary objective of ergonomics is to improve

human health, safety and performance.

Using regular mice in continuous basis can cause several

problems to the users. Sometime, the users have to keep their

arms straight for several hours. Some of the problems are

neurovascular disorders and nerve disorders [5]. The most

common neurovascular disorder is thoratic outlet syndrome.

This is caused by the compression of nerve and blood vessels

between the neck and the shoulder. The symptoms of thoratic

outlet syndrome include numbness in the arm and finger. The

most famous type of nerve disorder is carpal tunnel syndrome.

This occurs when the tunnel containing the tendons, nerves,

and blood supply to the hand is collapsed by repeated pressure

to the underside 0£ the wrist. It results in pain, numbness,

and tingling in the hand.

In some other time, the users have to hold their arms up

while using the mice when there is no, or little, space around

the mice. This might cause neck, upper-back, and shoulder pain

to some of the users [4].

www.manaraa.com

3

Project Objective

The objective of this project is to develop a new input

device that works like a regular mouse but does not need a

flat surface to roll the ball on. This new device should be

compatible with an already-existing driver. The device is

designed to be compatible with a Windows-operated personal

computer equipped with at least one Universal Serial Bus (USB)

port.

Project Steps

1. Collecting information on regular mice and understanding

how they work. This includes understanding the flow of

its microcontroller firmware.

2. Gathering information about computer operation system

(Windows and etc), data interface (PS/2, RS232, USB and

etc), and driver of the mice.

3. Starting the project with eliminating the regular sensor

in the mice and replacing them with a sensor that does

not need a rolling surface.

4. Choosing a microcontroller that can be used to process

the data from the sensors. This step includes writing

firmware for the microcontroller.

5. Building necessary circuitry for the microcontroller,

complete with the external components, if necessary.

6. Designing an outer shell of the device.

7. Assembling the device.

www.manaraa.com

4

Literature Review

Input Device

An input device is a tool which is used to interact

between the real world and the numeric world of computers.

This input device will translate humans' 'language' to the one

that can be understood by a computer. The 'language' could be

numeric or alphabetic input, motion input, voice input, etc.

This step includes using a sensor to transduce a mechanical

input and transforms that into an electronic signal.

The flow chart below shows an example of how an input

signal (measurand) looks when it travels from sensor to

computer. In most cases, the amplifier and filter in the chart

can be integrated into the microcontroller chip.

G
Measurand Sensor Amplifier Filter

Computer

Figure 1-1 Signal Flow [10]

There are two ways in which modern computers receive

input. The first way is that the computer gets input from

users [8]. Some experts call this kind of input as

'interactive input'. This input could be a command to direct

the flow of information, processing the information or telling

the computer which data it can operate on. Mice, keyboards,

joysticks and trackballs fall under this category.

www.manaraa.com

User input

Figure 1-2

5

Interactive input device

Electro-mechanical transducer

converting mechanical motion
into electrical signal

l
Converter

converting the transducer
signal to a digital form

l
Processor/Microcontroller

processing the digital data/
raw data and transforming
them into digital code used
by application

Interactive Input Device Flowchart [10)

In the second method, the computer gets input directly

from its environment without human intervention [8]. The

processor will react to the state of physical world according

to commands in its processor or microcontroller. This type of

input is the 'passive input' or indirect input. Some building

temperature controls, fire-sprinkler detectors and power

cutoff system fall under this category.

Computer Mice

'Mice are small, hand-held pointing and selecting devices

that are used to control the motion of a cursor on a

computer's screen. The motion of the cursor corresponds to the

movement of the mouse across a surface. Mice contain a motion-

www.manaraa.com

6

sensing mechanism and one or more switches that can be

actuated by an operator's fingers. Switch actuation can cause

menus to appear or can select certain commands or options from

existing menus [8].

Douglas Engelbert invented the first mouse in 1965 at

Stanford Research Institute (US Patent 3,541,541). The first

mouse used a pair of wheels to turn potentiometer shafts to

encode X and Y positions into analog electrical signals. It

was redesigned at the Xerox Palo Alto Research Center where

ball bearings were used as wheels and potentiometer shafts

were replaced by optical encoders. The optical shaft encoders

produce digital quadrature signals. The mouse was redesigned

to eliminate wheels but used ball driving mechanical digital

shaft encoders (US Patent 3,987,685). The first optical mouse

was presented in December 1980 by Steven Kirsch at MIT in

Cambridge (US Patent 4,364,035 and 4,390,873) and Richard Lyon

at Xerox in Palo Alto (US Patent 4,521,772 and 4,521,773). The

optical mouse does not require a working surface but will be

able to sense its motion from an arbitrary work surface [6].

www.manaraa.com

7

How Regular Mice Work

phot otransistors

CJ

stabilizer&
LED

D mouse
ball

X- axis roller

slotted wheel

slotted wheel

Y- axis roller

Figure 1-3 Mechanical Hardware of Opto - mechanical Mouse

For a regular mechanical mouse, the X and Y motion of the

mouse are measured by counting the pulses generated by the

photo couplers. In the case of an opto - mechanical mouse , the

rotating wheel blocks the infrared diode , so that the pulses

are generated on the phototransistor side . The mouse

microcontroller reads the state of those phototransistors and

takes into account the current mouse position . If this

information changes, the mouse microcontroller will send a

packet o f data to the computer data interface controller . The

mouse driver inside the host computer continuously updates the

mouse cursor ' s position on the screen as the mouse moves,

without requiring action from the application program using

it . Typically a mouse driver has the information of the

current mouse state (position and button states) and sends it

to the application or operating system . The mouse driver calls

mouse cursor moving routines when the mouse is moved and sends

messages to the application when buttons are pressed [8] .

www.manaraa.com

8

The standard PS/2 mouse supports the following input: X

(right/left) movement, Y (up/down) movement, left button,

middle button, and right button. Most of the USB mice also

support the same input. The only difference is in the way they

send data from mice microcontroller to the host computer [8]

Another mouse technology uses optical sensors to emit

pulses as the mouse moves across a pad with special grid

pattern. The infrared light emitted by the infrared diode is

reflected off the pad patterned with vertical and horizontal

grid lines. It is then received by the phototransistor in the

mouse. Then the pulses are processed in the same manner as a

mechanical mouse. The optical mice make no noise nor require

moving parts [8].

A typical mouse controlling system is shown below.

Sensors

Microcontroller

Communication Link

Data Interface

Device ~ri ·ver

Application

Figure 1-5 Mouse Controlling System

www.manaraa.com

9

Advantages and Disadvantages of Regular Mice

The most significant advantage of regular mice is that

they can be operated in a very small space. This is because

the mouse can be lifted and repositioned without causing any

signal to split. The mouse is also less expensive than other

input devices like graphics tablets.

The mice have disadvantages too. The clearest one is that

even though it just needs a small space to operate, this space

should be around the keyboard. If the user has a very limited

space to work with, this would be a problem. Another problem

with mice is that it is unnatural to use mice for drawing. It

would be better to use a pen or pencil-like input device for

drawing purposes. If we compare mice with digitizers, they

have a lower resolution and information transmission rate. So,

digitizers are more effective than mice when we talk about

resolution and speed.

Summary

This chapter summarized how the project is conducted and

also presented how a regular computer mouse operates. Chapter

2 explains the details of a mouse sensor, the elimination of

rolling parts of the mice and their replacement with the

pressure sensors.

www.manaraa.com

10

CHAPTER 2:
SIGNAL TRANSDUCER/SENSOR

Motion detection for a mouse consists of four commonly

known mechanisms: the mechanical mice, the opto -mechanical

mice, the wheel mice, and the optical mice.

The mechanical and opto - mechanical mice use a roller

ball. The ball presses against two rollers, which are

connected to two disks for the encoding of horizontal and

vertical motion. The mechanical mouse has contact points on

the disks. As the disks move they touch the contact bars,

which in turn generates signals to the microcontroller . The

opto-mechanical mouse uses disks that conta in evenly spaced

slots. Each disk has a pair of Light Emitting Diodes (LED) on

one side and a pair o f phototransistors on the other side [6].

slotted
wheel

Figure 2-1

two phototransistors

PTl ~T 2 l
' I

I
I

I
I

I

Opto-mechanical Details

Slot ted

Figure 2-2 Roller Ball, Shaft and Disk

www.manaraa.com

11

The wheel mouse has the same operation as the mechanical

mouse except that the ball is eliminated and the rollers are

rotated against the outside surface directly on which the

mouse is placed [6].

The optical mouse differs from the rest, as it requires

no mechanical parts. It uses a special pad with a reflective

surface and grid lines. Light emitted from the Light Emitting

Diode (LED) at the bottom of the mouse is reflected by the

surface and movement is detected by phototransistor sensors

[6] .

The most common used structure of mouse movement

detectors is the opto-mechanical detector.

Sensor in Opto-mechanical Mice

The mechanical parts of the opto-mechanical mouse consist

of one roller ball, two roller cylinders connected to the

disks, and the disks with multiple slots (40 slots in most

computer mice) on it. These slots are cut so that they are 90

degrees out of phase from each other. The LED and the

phototransistors are separated by the disks. As the disks

move, light pulses are received by the phototransistor and the

frequency ~f the pulses will depend on the speed of the disks,

thus the speed of the mouse. The pulse signals will not be

exactly square waves because of unstable hand movement [7].

Phototransistor #0 light

no light

Phototransistor #1 light

no light

Figure 2-3 Pulses in Phototransistors

www.manaraa.com

12

So if getting light is called phase '1' a~d not getting

light (when the light is blocked by the wheel) is called phase

'0', the signal will look like this:

Signal #0 - 1111000011110000111100001111
Signal #1 - 0011110000111100001111000011

Figure 2-4 Pulse Signal in Phototransistors

With the two tracks being 90 degrees out of phase, there

could be a total of four possible track states. It can be

observed that the values formed by combining the present and

previous states are unique for clockwise and counterclockwise

motion. For example, the mice produced by National

Semiconductor used binary values of these states to

differentiate between clockwise and counterclockwise motion of

the wheels. The microcontroller will then encode the states to

determine the exact displacement of the mouse [7].

(SignalO,Signalllt (Signal O, Signal 1) t-1 Binary
0 1 0 0 4
1 1 0 1 D
1 0 1 1 B
0 0 1 0 2

Table 2-1 State Table for Couuterclockwise Motion of Mouse
Wheel [13]

(SignalO,Signall)t (SignalO, Signall) t-1 Binary
1 0 0 0 8
0 0 0 1 1
0 1 1 1 7
1 1 1 0 E

Table 2-2 State Table for Clockwise Motion of Mouse Wheel
[13 l

www.manaraa.com

13

There are also, at least, two pushbuttons connected to

the input port of the microcontroller . When a switch opening

or closure is detected , a message is formatted and sent to the

host together with the displacement signals .

New Sensor

The new device is designed to be operated by squeezing

the mouse. Therefore, all mechanical parts of the mice are

eliminated and replaced by pressure sensors . Four pressure

sensors are needed for the device .

One rocker switch is needed for right and left click

button . One study recommended that left click of the button is

for left click and right click for the right button, not the

other way around. The r ocker switch also should be 13mm

minimum in length and 5mm minimum in width . The angle

displacement of the switch should not be higher than 30 ° [4] .

Figure 2-5 Rocker Switch

~--:-) ..
i : ~ '.+"'.i

, :• • •• 1(• ,:v , .. ~t
" .. ,.:;.::,t hr : ·•f 1··;--..

Figure 2-6 Dimensi on of the Rocker Switch

www.manaraa.com

14

Force/Pressure Sensor's Specification

The size of the sensor should be small enough since space

is the main issue in this new design. Other than the sensor,

the microcontroller, connector and other component have to be

fit into a shell of the size smaller than human's palm.

Also, since the sensor will be used by a human, its

sensitivity must be suitable for the pressure exerted by a

human hand.

Piezoresistive/Piezoelectric Sensors

Piezo means pressure while resistive means the opposition

to DC current flow. A piezoresistive sensor is a device whose

resistance changes as the pressure changes. A piezoelectric

material generates an electrical charge when subjected to

mechanical strain or, conversely, can change dimensions when

subjected to voltage. Most of the piezoresistive sensors are

made from silicon [9].

Piezoresistive sensors do not require external power to

operate and they have low noise. No external power means fewer

components needed and low noise means the signals transduced

are more accurate and represent the true value of the input

force. There are several options of piezoelectric sensors in

the market. FlexiForce™ Sensors from Tekscan Inc. of Boston,

Massachusetts are used for this project [9].

FlexiForce™ Sensors

FlexiForce™ Sensors is one example of a piezoresistive

sensor. This sensor is thin and flexible enough to measure

force between any two surfaces. The sensor is built from two

layers of polyester film. Each layer has silver surface

(conductive material) followed by pressure-sensitive ink.

www.manaraa.com

15

Adhesive then is applied to laminate two layers of polyester

films together. The sensing area is marked by a silver circle

and this silver extends to the connectors at the other end of

the sensor. The connector has three pins with the middle pin

inactive [12] .

Figure 2-7 FlexiForce™ Sensors

Figure 2-8 Side View of FlexiForce™ Sensors

The sensor yields current as its output, not voltage . Its

resistance varies from 20 Mega-Ohm at zero - load to S kilo-Ohm

at full - load [12] . This sensor comes in force ranges of 1 lb,

25 1b, 100 lb , 500 lb and 1000 lb . The 25 lb range is picked

for the new mouse . For 25 - lb range, the resistance will change

app r oximately 80 kilo - Ohm for every 0 . 1 lb of force .

Features of a FlexiForce™ sensors

1. Physical Properties

Thickness = 0 . 005 " (0 . 127 mm)

Length= 8 . 000 " (203 mm) - end of connector to tip of

.::ensor

Width = 0 . 55" (14 mm)

Active sensing Area= 0 . 375 " (9 . 53 mm) diameter

www.manaraa.com

2 . Sensi ti vi ty

Sensitivity 80 kQ/0. llb

16

or

= 800 kQ/lb

3. Linearity (Error)

Linearity is defined as how closely the output of a

sensor follows a straight line when a linear pressure is

applied. This 'linearity error' can be calculated by

dividing the maximum deviation of output voltage to input

pressure [9] .

Linearity % = [(VdV3) -Vi] x 100

maximum deviation or nonlinearity, mV

full scale reading, mV

no load reading, mV

The Flexiforce™ sensor has less than +/-5% linearity

error when the straight line is drawn from 0% to 50% load

[12 l .
4 . Repeatability

Repeatability shows how accurate the sensor is in

repeating a pressure measurement at any pressure (within

the pressure range and temperature range). The sensor is

allowed to have full-scale pressure cycles and full-range

temperature cycles between the measurements. The

repeatability (error) is then the maximum error of

consecutive measurements at set reference conditions [9].

Flexiforce™ sensor has repeatability (error) at +/-

2. 5% of full-scale [12].

5. Drift

Drift is unwanted measuring error, which varies very

slowly. In the new design, sensor is used to sense force

and force only. The sensor has to be sensitive only to

www.manaraa.com

17

input force and ignore others. It should be insensitive

to temperature and others. If the error varies rapidly,

it is called noise [9].

Flexiforce™ sensor has 3% drift per each logarithmic

time at constant load of 25-lb [12].

6. Rise Time

Rise time is a measurement of time taken to get the

output voltage from 10% to 90% of output range. Rise

time is mostly used to measure an ability of a system to

handle transients. In this case, the equilibrium/final

response is the full-scale value of the sensors [9].

Flexiforce™ sensor needs less than 20 microseconds

to increase from 10% to 90% of its full-scale voltage

[12] .

7. Operating Temperature

Flexiforce™ sensor can be operated at temperature

between 15°F to 14 0°F (-9°c to 60°c) [2 0] . This device is

designed to operate indoors but with this kind of

temperature range, the device could be used outdoors

[12] .

Excitation Circuit

The output of Flexiforce™ sensor is in resistance (Ohm)

or current (Ampere). An excitation circuit is needed to

convert the resistance/current into voltage. The circuit

consists of an op-amp and a resistor. The 5-Volt power from

USB line is used to power up the op-amp. The 5-Volt power line

could be used as a reference voltage for the op-amp as well,

although other values can also be used.

www.manaraa.com

18

20 kQ

Sensor
5V

5V Vout

+

Vref

Ground

Figure 2-9 Sensor's Excitation Circuit

The Vout of the excitation circuit varies from Vref at

zero load and down to 0-volt at full load.

Summary

The op-amp in the excitation circuit does some signal

conditioning by converting unstable current input to much

stabilized voltage output [11]. The voltage signal is directly

proportional to the force applied on the sensor [12].

The microcontroller will process the signal before it can

be transferred and accepted by host computer. Chapter 3

explains about the microcontroller.

www.manaraa.com

19

CHAPTER 3:
MICROCONTROLLER

Most microcontroller are grouped into families. The first

generation of microcontroller was invented by Intel Computer

called 8048 microcontroller. It later be known as 8051

microcontroller. The PIC family was developed by Microchip.

The PIC was the first microcontroller to use Reduced

Instruction Set Computer (RISC) technology. It has only 35

single instructions compared to 90 for 8051 microcontroller.

It was also the first microcontroller to use two different

buses for program and data. National Semiconductor, Cypress

and several other developers have their own microcontroller

family too [14].

All microcontroller need a program or firmware in order

for them to run. Most microcontroller do not need any extra

programming for interfacing but they still need the firmware

to carry out the task of reading inputs, sending out data to

the host computer and so forth.

The microcontroller should be capable of handling a low

speed USB device transaction. It should be small in size to

meet the space requirement. The microcontroller should also

have at least 4 analog input pins and 4 analog-to-digital

converters to accommodate the 4 outputs from the sensors. It

should have 2 other input-output (I/0) inputs for the left

click and right click buttons.

www.manaraa.com

20

Elements of a USB Microcontroller
1. CPU

A controller chip's central processing unit (CPU)

controls the chip's actions by executing instructions in

the firmware stored in the chip [21].

2. Program Memory

The program memory holds the code that the CPU executes.

This memory may be in the CPU chip or a separate chip.

It can be ROM (read-only memory), EPROM (erasable

programmable ROM), EEPROM (electrically EPROM), RAM

(random access memory) or OTP (one-time programmable)

memory [21].

3. Data Memory

Data memory provides temporary storage during program

execution. Data memory is usually RAM [21].

4. Registers

Registers are another option for temporary storage.

Registers are memory locations that are accessed using

different instructions than those used for data memory.

Most have defined functions, like Analog-to-Digital

Result (ADRES), which is used to store the result from

Analog-to-Digital Conversion. The register can also be

accessed more quickly than other data memory [21].

5. USB Port

A USB microcontroller must of course have a USB port and

supporting circuits [21].

6. USB Buffers

A USB microcontroller must have transmit and receive

buffers for storing USB data [21].

www.manaraa.com

21

7. I/0 Ports

Other than the USB port, a microcontroller often includes

a series of general - purpose input and output (I/O) pins

that will connect to other circuits or input sensors

[21] .

PIC16C745 8-Bit CMOS USB Microcontroller

A Microchip PIC16C745 microcontroller was selected for

this project.

Figure 3-1 PIC16C745

Some of the features of the PIC16C745 include [14]:

• High Performance Reduced- Instruction- Set - Chip / Computer

(RISC) CPU

• Only 35 single word instructions

• I nterrupt capability (up to 12 internal/external

interrupt sources)

• Re s et capable

• Programmable code - protection

• Power saving SLEEP mode

• Processor clock of 24 MHz derived from 6 MHz crystal or

resonator

www.manaraa.com

22

• Fully static low-power, high speed Complementary-Metal-

Oxide-Semiconductor (CMOS)

• Operating voltage range

o 4.35 to 5.25 V

• High Sink/Source Current 25/25 mA

• Wide temperature range

o Industrial (-4 o0c - 8 5°c)

• Low-power consumption:

o ~ 1 6 mA @ 5 V, 2 4 MHz

o 100 µA typical standby current

• Universal Serial Bus (USB 1.1)

o Soft attach/detach

• 22 Input/Output (I/0) pins

o Individual direction control

o 1 high voltage open drain (RA4)

o 8 PORTB pins with:

•
•

Interrupt-on-change control

Weak pull-up control

o 3 pins dedicated to USB

• 5 8-bit multi-channel Analog-to-Digital converter

• In-Circuit Serial Programming (ICSP)

www.manaraa.com

PIC16C745 Pin Diagram

28-Pin DIP, SOlC

~,.. ___..
'<A:YA'4' __
l{A',,A'41-
•tA?,AN2-

t (f..3iA \13,\'Hl ,l ...,_,...
fiA4/l o;:;;.c..,__.,..

l<A~•'AN4-
Vss.---,...

:.;SC1•~LKI\J--,...

H:.;l;,'110SQiflC'<-
IK'·• 110$t:f.:C.P:t-

23

Figure 3-2 PIC16C745 Pin Diagram [Microchip Technology Inc.,
2000]

Oscillator Selection

The PIC16C745 has four oscillator alternatives:

1. High Speed (HS) Crystal/Resonator

2 . External Clock (EC)

3. High Speed (HS) Crystal/Resonator with internal

PLL enabled

4 . External Clock (EC) with internal PLL enabled

A high speed crystal is used in this project. In this

mode, a 6 MHz crystal is connected between OSCl and OSC2 pins

to provide a 24 MHz processor clock. It is required to use a

parallel cut crystal instead a series cut crystal. A series

cut crystal may give a frequency out of the crystal

manufacturer's specification [14].

Cl

XTAL

VUSB

C2

OSCl

PIC16C745

OSC2

Figure 3-3 Crystal/Resonator Oscillator

www.manaraa.com

24

Higher capacitance of Cl and C2 increases the stability

of the oscillator but also increases the start-up time [14].

If a ceramic resonator is used instead, it could range from

10-68 pF for 6 MHz operation. The capacitor Cl and C2 could be

as low as 15 pF to 33 pF fer the same 6 MHz operation. In this

project, 33pF capacitor is used for both Cl and C2.

Code Protection

The code protection option is used to keep the firmware

inside the microcontroller from mishandling. This is to make

sure nobody other than the programmer has access to the

firmware [14]. But Microchip, the manufacturer of this

microcontroller, does not recommend code protecting because

devices that are code protected may be erased, but not

programmed again. Code protection is set to be off in this

project.

In-Circuit Serial Programming (ICSP)

To program PIC16C745, a serial connection is used with

two lines for clock and data, power line, ground and the

programming voltage. RB6 becomes the programming clock and RB7

becomes the programming data [14].

PIC16C745

+SV VDD

ov Vss
VPP MCLR/VPP
CLK RB6

DATA RB7

... VDD r

Figure 3-4 In-Circuit Serial Programming (ICSP)

www.manaraa.com

25

Configuration Word

During the programming, users will have a chance to

configure certain features of the microcontroller. These

include code protection option, Power-up Timer (PWRT)

enable, Watchdog Timer (WDT) enable and oscillator

selection [14]. In this project, code protection, PWRT,

WDT are all set to be off and H4 is selected for

oscillator.

PIC16C745 Instructions (OPCODE)

Instruction (OPCODE)

The PIC16C745 uses 14-bit wide words for programming and

it has only 35 words of instructions in total [14].

Field Description
w Working register (accumulator)

f Register file address (0x00 to
0x7F)
Destination select; d=0:store

d result in w, d=l:store result in
file register f. Default is d=l

k Literal field, constant data or
label

b Bit address within an 8-bit file
register

Table 3-1 OPCODE Field Descriptions

Operands Descriptions
Byte-Oriented File Register Operations
ADDWF f,d Add W and f
ANDWF f,d AND W with f
CLRF f Clear f
CLRW - Clear w
COMF f,d Complement f
DECF f,d Decrement f
DECFSZ f,d Decrement f, Skip if 0
INCF f,d Increment f
INCFSZ f,d Increment f, Skip if 0

www.manaraa.com

26

IORWF f,d Inclusive OR W with f
MOVF f,d Move f
MOVWF f Move W to f
NOP - No Operation
RLF f,d Rotate Left f through Carry
RRF f,d Rotate Right f through Carry
SUBWF f,d Subtract w from f
SWAPF f,d Swap nibbles in f
XORWF f,d Exclusive OR W with f
Bit-Oriented File Register Operations
BCF f,b Bit Clear f
BSF f,b Bit Set f
BTFSC f,b Bit Test f, Skip if Clear
BTFSS f,b Bit Test f, Skip if Set
Literal and Control Operations
ADDLW k Add literal and W
ANDLW k AND literal with W
CALL k Call Subroutine
CLRWDT - Clear Watchdog Timer
GOTO k Go to address
IORLW k Inclusive OR literal with w
MOVLW k Move literal to w
RETFIE - Return from interrupt
RETLW k Return with literal in w
RETURN - Return from Subroutine
SLEEP - Go into standby mode
SUBLW k Subtract w from literal
XORLW k Exclusive OR literal with w

Table 3-2 PIC16C745 Instruction Set (OPCODE)

PIC16C745 Memory

The memory in PIC16C745 uses Harvard architecture where

program and data are accessed from separate memories using

separate buses [14]. The regular von Neumann architecture

allows program and data fetched from the same memory using the

same bus. While allowing program and data to use separate

buses in PIC16C745, this lets instructions to be sized

differently than the 8-bit wide data word. The instructions

(OPCODE) for PIC16C745 are 14-bits wide making it possible to

www.manaraa.com

27

have all single word instructions. This 14-bit OPCODE needs

only one single cycle (166.6667 ns@ 24 MHz) to run, except

for program branches when they need two full cycles.

Harvard von-Neumann

Program
Data L L Program
Memory CPU Memory 8-bit 14-bit

L And
CPU Data 8-bit Memory

Figure 3-5 Harvard vs. Von-Neumann Architecture

The program memory in PIC16C745 is capable of having up

to 8K of 14 bits of program memory [14].

The data memory is divided into four smaller banks and

each bank has Special Function Registers (SFR) and General-

Purpose Register (GPR) [14]. Register is the same as regular

memory except that they have their own name. This would make

the process of calling and storing them easier and faster.

Each bank has addresses up to 7Fh or 128 bytes. Some highly

used SFR, like the STATUS Register is duplicated/mirrored into

another bank to reduce access time.

The Arithmetic Logic Unit (ALU) is a general-purpose

arithmetic unit that performs arithmetic and Boolean functions

between the data in the working register and the one in

register file [14]. It is the one who executes addition,

subtraction, and etc. The PIC16C745 hold an 8-bit ALU.

www.manaraa.com

28

PIC16C745 Input-Output (I/0) Ports

The PIC16C745 is equipped with three I/O ports. PORTA has

six pins (RAO: RA5) of bi-directional I/O, PORTB has eight

(RB0: RB7) of them and PORTC has only five (RC0:RC2, RC6: RC7) .

Each port has its own data direction bits (TRI SA, TRISB, and

TRISC) which can be configured to make the pins as output or

input [14].

All pins in PORTA have Time-to-Live (TTL) input levels

and full CMOS output drivers except RA4, which has an Schmitt

Trigger input and an open, drain output. The TRISA register

controls the direction of the RA pins, even when they are

being used as analog inputs. PORTA is a 6-bit wide port. In

this project, Port A is used for the sensors A/D conversion

analog input [14].

PORTB is an 8-bit wide bi-directional port and the

corresponding data direction register is TRISB. Each of the

PORTB pins has a weak internal pull-up. Four of PORTB pins

(RB4:RB7) have an interrupt-on-change feature. Only pins

configured as inputs can cause this interrupt to occur. This

interrupt can wake the device from SLEEP. RB0/INT is an

external interrupt input pin and is configured using the

INTEDG bit in OPTION Register (OPTION REG). In this project,

Port Bis used by the left and right button and it utilized

the internal pull up feature of the port. By doing this, the

pushbutton just needs to be shorted to ground instead of

having to connect to an external resistor first [14].

PORTC is a 5-bit bi-directional port with TRISC register.

All pins in PORTC have Schmitt Trigger input capability. Port

C is left unused in this project [14].

www.manaraa.com

29

PIC16C745 Analog-to-Digital (A/D) Converter

Some of the advantages of a microcontroller A/D converter

include [15]:

• Less cost than fully integrated device

• Minimal necessary hardware or software

• Utilizes available I/O

• Does not require calibration (self-calibrated)

The PIC16C745 is equipped with 5 channels of 8-bit

Analog-to-Digital (A/D) converter. This A/D converter converts

an analog input signal to a corresponding 8-bit digital value.

The module generates the result via a successive approximation

method of analog-to-digital conversion. The analog reference

voltage is software selectable to either the device's positive

supply voltage (Voo) or the voltage level on the VMF pin. In

this project, VREF pin is used instead of Voo. The converter can

be operated even in SLEEP mode [15].

There are three registers, which are associated with the

A/D module. They are A/D Result Register (ADRES), A/D Control

Register 0 (ADCON0) and A/D Control Register 1 (ADCONl). The

ADRES holds the result from the conversion. The ADCON0

controls the operation of the A/D module, such as A/D

conversion clock, A/D conversion status bit and A/Don/off

bit. The ADCONl configures the functions of the port pins.

These pins can be configured as analog inputs or as digital

input/output [14].

A/D Conversion Steps [18]

1. Configuring the A/D module:

• Configuring analog pins, voltage reference, digital

I/O in ADCONl register.

www.manaraa.com

30

• Selecting A/D input channel in ADCON0 register.

• Selecting A/D conversion clock in ADCON0 register.

• Turning on A/D module in ADCON0 register.

2. Configuring A/D interrupt, if desired.

3. Waiting the required acquisition time (TAQ).

4. Starting conversion:

• Set (1) GO/DONE bit in ADCON0 register

5. Waiting for A/D conversion to complete.

6. Reading conversion results in ADRES register

7. Going to step 1 or 2 for next conversion. A minimum wait

of 2TM is required before next acquisition starts. is

defined as the A/D conversion time per bit.

Acquisition Time (TAcQ)

The acquisition time is important to make sure the A/D

converter meets its specified accuracy. After the analog input

channel is selected, the acquisition time must follow before

the conversion can be started. The charge holding capacitor

inside the microcontroller is required to fully charge to the

input channel voltage level. The source impedance (Rs) and the

internal sampling switch (Rss) impedance directly affect the

time required to charge the capacitor [14].

The equation to calculate acquisition time is as below:

~CQ Amplifier Settling Time+

Hold Capacitor Charging Time+

Temperature Coefficient

TACQ = TAMP + Tc + TCOEFF

Where

www.manaraa.com

31

TAMP= Sµs
Tc = -(51.2pF)(lkQ + R55 + R5) ln(l/ 511)

TcoEFF = (Temp-25° C)(0.0Sµs /° C)

Given the maximum source impedance (Rs) at l0kQ and a

worst-case temperature of 100°c, the acquisition time will not

be more than 16 µs [14] . The TAcQ for this device is set at 16

µs.

Conversion Time (TAD)

The TAD is defined as the A/D conversion time per bit. The

A/D conversion requires 9.5TAD per 8-bit conversion. The

minimum TAD time of l.6µs is required to ensure correct A/D

conversion. The source of the A/D conversion clock can be

selected during the programming in ADCON0 register [14]. There

are four possible options for TAD:

1. 2Tosc

2. 8Tosc

3. 32Tosc

4. Dedicated Internal RC oscillator

A/D Clock Source (TAD) Device Frequency
6 MHz 24 MHz

2TOSC 333.3 ns 83.3 ns
8TOSC 1 ~LS 333.3 ns

32TOSC 5 ~LS 1.333 ~LS

RC 2-6 ~LS 2-6 ~LS

Table 3-3 TAD vs. Device Operating Frequencies

The higher the TAD, the better the result will be [14] In

this project though, the time is important too. So, the A/D

converter in this device is set to use 32TOSC conversion

clock. With the device operating at 24 MHz, the TM is 1.333 16

µs for each bit of conversion or 13 µs per conversion.

www.manaraa.com

32

Sampling/Successive Approximation Method of A/D Conversion

The PIC16C745 uses sampling/successive approximation as

its A/D conversion method. The basic principle behind the

sampling A/D converter is to use a digital-to-analog converter

(DAC) approximation of the input and make a comparison with

the input for each bit of resolution. Following the input

signal acquisition, the most significant bit (MSB) is tested

first. This is achieved by generating ½Vref with the DAC and

comparing it to the sampled input signal. The successive

approximation register (SAR) drives the DAC to produce

estimates of the input signal. The process is started with the

MSB and continues to the least significant bit (LSB). For each

bit test, the comparator output will determine if the estimate

should stay as a 1 or O in the result register. If the

comparator indicates that the estimated value is under the

input level, then the bit stays set. Otherwise, the bit is

reset in the result register [16].

PIC16C745 Firmware

Microcontroller will not work if they do not have

firmware programmed on them. The firmware is a code where the

programmer tells the microcontroller what to do, step by step.

The steps include enumeration, input readings, A/D conversion,

data transfer and so on. Most of the time, programmers program

the firmware in Assembly, or C, and then the development

programmer (hardware equipped with development software which

usually comes with the microcontroller) of the microcontroller

will convert that into hexadecimal language. Most

microcontroller, including the PIC16C745, only understands the

hexadecimal base language.

www.manaraa.com

33

C or Assembly Hexadecimal
.---------. Language .---------,

Users or Development
Programmer Prograrr@er w/

Development
Software

Microcontroller

Figure 3-6 Firmware Development

To keep up with a tight dateline, a full time

microcontroller expert was hired to write the firmware.

Michael J. Cook is a Project Director/Chief Design engineer at

ISU Spacecraft Systems & Operations Laboratory (SSOL). His

responsibility was to choose a suitable microcontroller for

the project and write the firmware for it. Mr. Cook could not

finish writing the firmware and this task later was

transferred to three undergraduate research assistants. They

are Troy Benjegerdes, John Burns and Brenton Rothchild. They

were able to program and troubleshoot the firmware.

Summary

In terms of signal flow, the microcontroller accepts any

analog input such as resistance, current or voltage. The

sensors could be connected directly to the microcontroller

without using any excitation circuit. Microchip though

recommends the microcontroller input impedance for an analog

source to be 10 kQ, being m~ch lower than the expected ranges

of as much as 20 MO for the Flexiforce sensors [14]. This

recommendation is to provide for suitable acquisition time and

accuracy in the A/D converter charge holding capacitor. At

larger impedances, it would take much longer to charge the

holding capacitor, thus leading to degraded performance. So an

www.manaraa.com

34

op amp is used to convert the sensor's resistance into

voltage. This circuit is called the excitation circuit.

The microcontroller does signal conditioning (filtering,

amplifying, A/0 conversion) according to what the firmware

tells it to do. The output of the microcontroller, again,

depends on what the firmware tells it to do. In this project

the output of the microcontroller is in USB plus and minus

differential. These data are ready to be used by the host

computer. Chapter 4 explains about the data transferring from

microcontroller (or device) into the host computer.

www.manaraa.com

35

CHAPTER 4:
DATA TRANSFER

Most of the work in data transfer is done automatically

by the microcontroller and device driver in the host computer.

There is just a little that the programmer/developer has to

take care of, like hardware setup for the data transfer. The

programmer also has to make sure that the microcontroller

follows some requirements, like USB 1.1 Specifications and Low

Speed Device requirement.

Unlike an RS232 interface which has 2 separate lines for

transmitting and receiving data, USB has 2 lines used in both

transmitting and receiving. When transferring data, the USB's

two logic states are differential 1 and differential 0. A

differential 1 exists at the driver when the D+ output is at

least 2.8V and the 0- output is no greater than 0.3V. A

differential 0 exists at the driver when 0- is at least 2.8V

and D+ is no greater than 0.3V. At the receiver

(microcontroller), a differential 1 exists when D+ is at least

2V and the difference between D+ and D- is greater than 200

mV. A differential 0 exists when D- is at least 2V and the

difference between D- and D+ is greater than 200mV [19].

Basic Definitions

It is important to know some of basic definitions related

to data transfer.

Enumeration

The enumeration process allows the host to ask the device

to introduce itself and negotiates performance parameters,

such as power consumption, transfer protocol and polling rate.

www.manaraa.com

36

The host initiates the process when it detects that a new

device has attached itself to the bus [19].

Frames

Data being transferred in the bus is grouped in a format

called frame. Each frame is 1 ms in duration and is composed

of multiple transfers. Each transfer type can be repeated more

than once within a frame [19].

Endpoints

Endpoints can be thought as virtual ports inside the host

computer. Endpoints are used to communicate with a device's

function. Each endpoint is a source or sink of data. There are

a maximum of 6 endpoints for a low speed device. Endpoints

have both In and Out associated with them. The In/Out is with

respect to the host not the device [21].

Pipes

A pipe is a virtual connection between a software

function that exists on the USB host and a given endpoint on a

device [19].

Bus

A bus is a means of getting data from one point to

another. The bus includes not only the actual capability to

transfer data between devices and the host, but also all

appropriate signaling information to ensure complete movement

of the data from point A to point B. To avoid loss of data, a

bus must include a means of controlling the flow of data, in

order to ensure that both ends are ready to send and/or

receive information. Finally, both ends must understand the

speed with which data is to be exchanged [19].

www.manaraa.com

37

Serial Mode vs. Parallel Mode

In serial mode, the bits of each character are

transmitted one at a time, one after another. A single pipe,

lead, or channel is used to transmit the data bits serially.

Serial transmission is easier to implement than parallel

transmission, and allows greater distances between devices.

The Universal Serial Bus uses serial transmission [19].

The parallel interface transmits all of a character's

bits simultaneously instead of one at a time. Transmission of

all the bits at once in parallel requires eight separate data

leads. Transmitting all the data bits of a character between

devices at the same time allows for a very fast transmission

of the data [21].

Most slow speed devices within a computer system like

mice and keyboards use serial interface. Most high performance

devices that are connected locally within a computer, such as

the CPU, RAM and disk drives use a parallel connection [20].

Serial Port vs. Serial Bus

There is a slight difference between serial port and

serial bus. A traditional serial port is a point-to-point

connection between a computer and a device, whereas on a

serial bus many devices can communicate and share the

connection to the computer all at the same time. Each device

talks to other devices, or the host computer, through well-

defined bus protocols. Each device on the USB is individually

addressable, and this is all controlled with software [22].

www.manaraa.com

38

Protocols

A protocol is a set of rules that is instituted between

devices to allow for the orderly flow of information.

Protocols include rules or capabilities to support aspects

such as when to send information, how to send it, how much

information can be sent, confirmation that information has

been sent, and means of confirming that the correct

information has been sent. Protocols include the control

mechanisms for two devices to properly communicate [22].

Flow control is an important aspect of a protocol. Flow

control is used to regulate the flow of information between

the devices. When computers are communicating with other

devices, flow control must be used to ensure that data is not

lost [22].

Descriptors

The host computer needs a number of descriptors to

provide information necessary to identify a device, specify

its endpoints, and each endpoint's function. The five general

categories of descriptors are Device, Configuration,

Interface, Endpoint and String.

Device Descriptors

The device descriptor provides general information

such as manufacturer, product number, serial number, USB

device class the product falls under, and the number of

different configurations supported. There can be only one

device descriptor for any given device [19].

www.manaraa.com

39

Configuration Descriptors

The configuration descriptor provides information on

the power requirements of the device and how many

different interfaces (USB, RS232 or PS/2) are supported

when in this configuration. There may be more than one

configuration descriptor for any given device [19).

Interface Descriptors

The interface descriptor provides the number of

endpoints used in the interface and the class driver

(specific or HID) to use should the device support more

than one device class. There can be only one interface

descriptor for each configuration [19).

Endpoint Descriptors

The endpoint descriptor provides details about the

transfer type supported, direction (in/out), bandwidth

requirements and polling interval. There may be more than

one endpoint in a device and endpoints may be shared

between different interfaces [19].

String Descriptors

The string descriptor is used to provide vendor

specific or application specific information. They may be

optional depending on vendor and application [19].

Transfer Basics

The USB communications can be divided into two types:

transfers used in configuration and the one used in

applications [19].

In configuration communications, the host learns about

the device and prepares it for exchanging data. Most of these

www.manaraa.com

40

communications take place when the host enumerates the device

on power up or attachment.

Application communications occur when applications on the

host exchange data with an enumerated device. These are the

communications that carry out the device's purpose.

The USB's two signal lines carry data to and from all of

the devices on the bus. The wires form a single transmission

path that all of the devices must share. Unlike RS232, which

has a TX line to carry data in one direction and an RX line

for the other direction, USB's pair of wires carries a single

differential signal, with the directions taking turn. Because

all of the transfers share one data path, each transaction

must include the address of the transaction's source or

destination. Every device has a unique address assigned by the

host. Everything a device sends is in response to receiving a

request from the host to send either data or status

information in response to received data [19].

Each transfer contains one or more transactions. A

transfer with a small amount of data may require just one

transaction. If the amount of data is large, a transfer may

use multiple transactions, with a portion of the data in each

[19] .

Each transaction contains a token packet, data packet and

handshake packet. In the token phase, the host sends a

communications request in a token packet. In the data phase,

the host or device may transfer any kind of information in a

data packet. In the handshake phase, the host or device sends

status, or handshaking, information in a handshake packet

[19] .

Each packet contains a PIO (packet identifier) and may

contain additional information and CRC (error-checking) bits.

www.manaraa.com

41

For example, token packets contain endpoint address in

addition to PIO, data packets contain data in addition to PIO,

and handshake packets contain the handshake code in addition

to PIO [19].

USB HOST

Token: Do You
Have Data To
Send?

Response Packet
Included Data

Handshake:
Success!

Token To Next
Device

USB DEVICE

Figure 4-1 Typical USB Bus Transaction

www.manaraa.com

42

Transfer

Transaction Transaction

Token Packet
11

Data Packet
11

Handshake Packet I

I \
PIO CRC Add. info

11
PIO I CRC I Add. info II PIO CRC Add. info

Figure 4-2 Transfer Flowchart

Type of Transfer

Full Speed USB supports all four types of transfer:

Isochronous, Bulk, Control and Interrupt. Low Speed USB, like

this device, supports only two types of transfer: Control and

Interrupt.

Control Transfers

Control transfers send requests and data relating to

the device's abilities and configuration. They can also

transfer blocks of information for any other purpose.

Every device must support control transfers over the

default pipe at Endpoint O [21].

For the low speed device, the maximum size for the

data packet is 8 bytes. The host reads the maximum data

size from the device. If a transfer requests more data

than will fit in one transaction, t~e host controller

divides the transfer into multiple transactions [21].

The host must make its best effort to ensure that

all control transfer get through as quickly as possible.

www.manaraa.com

43

The host controller reserves 10 percent of the USB

bandwidth for control transfers. The specification

recommends reserving control transfers for servicing the

standard USB requests as much as possible. This helps to

ensure that control transfers transmit quickly by keeping

the bandwidth reserved for them as open as possible [21].

If a device doesn't return an expected handshake

packet during a control transfer, a PC controller will

retry twice more. If the host receives no response after

a total of three tries, it notifies the software that

requested the transfer and stops communicating with the

endpoint until the problem is corrected. The two retries

include only that sent in response to no handshake at all

[21] .

Interrupt Transfers

Interrupt transfers are useful when moderate amounts

of data have to transfer within a specific amount of

time, like in keyboards and mice. Users don't want a

noticeable delay between pressing a key or moving a mouse

and seeing the result on screen. And a hub needs to

report the attachment or removal of devices promptly. Low

speed devices, which support only control and interrupt

transfers, are likely tc use interrupt transfers for

generic data. The name interrupt suggests that a device

can cause hardware interrupt that results in a fast

response from the PC. But the truth is that interrupt

transfer, like all other USB transfers; occur only when

the host polls a device. The transfers are interrupt-

like, however, because they guarantee that the host will

request or send data with minimal delay [21].

www.manaraa.com

44

Low speed devices can use a maximum packet size of 8

bytes. If the amount of data in a transfer won't fit in a

single packet, the host controller divides the transfer

into multiple transactions [21].

An interrupt transfer guarantees a maximum latency,

or time between transaction attempts. In other words,

there is no guaranteed transfer rate, just a guaranteed

maximum time between transactions. The endpoint

descriptor stored in a device specifies latency could be

between 10 to 255 ms for low speed devices. The host

controller ensures that the transactions have no more

than the specified time between them [21].

If a device doesn't return an expected handshake

packet, a PC controller will retry twice more. The host

will also retry if it receives a negative acknowledge

(NAK) from a device [21].

Handshaking

Like other interfaces, the USB has status and control

signals that help to manage the flow of data. Most handshaking

signals transmit in the handshake, though some use the data

packet. The three defined status codes are ACK, NAK, STALL and

no response [19].

The ACK (acknowledge) indicates that a host or device has

received data without error [19].

The NAK (negative acknowledge) means the device is busy

or has no data to return. If the host sends data at a time

when the device is too busy to accept it, the device sends a

NAK in the 'handshake' packet. If the host requests data from

the device when the device has nothing to send, the device

sends a NAK in the 'data' packet. In either case, NAK

www.manaraa.com

45

indicates a temporary condition, and the host retries later.

Hosts never send NAK [19].

The STALL handshake can mean unsupported control request,

control request failed, or endpoint failed. When a device

receives a control transfer request that the endpoint doesn't

support, the device returns a STALL to the host. The device

also sends a STALL if it supports the request but for some

reason cannot take the requested action. Another use of STALL

is to respond to transfer requests when the endpoint's Halt

feature is set, indicating that the endpoint is unable to send

or receive data at all. On receiving a functional STALL, the

host drops all pending requests to the device and doesn't

resume communications until it has sent a successful request

to clear the Halt feature on the device. Hosts never send

STALL [19].

The No Response status occurs when the host or a device

expects to receive a handshake but receives nothing. This

usually indicates that the receiver's error-checking

calculation detected an error in the data, and informs the

sender that it should try again, or take other action if

multiple tries have failed [19].

Software Interfacing

For interfacing purpose, PIC16C745 is equipped with a

layer of software that handles lowest level interface. It

makes the PIC16C745 plug-and-play capable even without

firmware written by the user. Most of the processes take place

in Interrupt Service Routine (ISR). By having this software,

users don't have to do anything while the microcontroller does

the enumeration and data comi~unication at the same time. This

software gives users simple Put/Get function to interface the

www.manaraa.com

46

microcontroller to the host computer but substantial setup is

required to generate appropriate descriptors [14].

Main Application
(Host Computer)

Put
OSB

Get
OSE

OSB Peripheral

Init
OSB

Figure 4-3 PIC16C745 USB Software Interfacing

There are three main functions in this PIC16C745

interfacing software: InitUSB, PutUSB and GetUSB.

The InitUSB initializes the USB peripheral, allowing the

host to enumerate the device. It enables the USB interrupt so

enumeration can begin. The actual enumeration process occurs

in the background, driven by the host and the Interrupt

Service Routine (ISR). It should be called by the main program

immediately upon power-up. It enables the USB peripheral and

USB reset interrupt, and transitions the part to the powered

state to prepare the device for enumeration. The PutUSB sends

data to the host computer, and the GetUSB receives data from

the host [14].

There are other functions related to this PIC16C745

interfacing software: DelnitUSB, ServiceUSBint,

StallUSBEP/UnstallUSBEP, SoftDetachUSB, CheckSleep and USBErr.

The DelnitUSB disables the USB peripheral, removing the

device from the bus. An application might call this function

when it was finished communicating to the host computer.

ServiceUSBint handles all interrupts generated by the USB

peripheral. The StallUSBEP/UnstallUSBEP sets or clears the

www.manaraa.com

47

stall bit in the endpoint control register. The stall bit

tells the host computer that user intervention is needed and

until such action is made, further attempts to communicate

with the endpoint will fail. Once the intervention has been

made, UnstallUSBEP clears the bit allowing communication to

take place. These calls are useful to signal to the host that

user intervention is required, like when a printer is out of

paper. The SoftDetachUSB electrically disconnects the device

from the bus and then reconnects, so that the host could re-

enumerate the device. This process is more to check a process

to make sure that the host has seen the device disconnect and

reattach to the bus. The CheckSleep is a test to check if

there is no activity on the bus for 3ms. If that is the case,

the device can be put to SLEEP to conserve energy, until

wakened up by bus activity. This process has to be handled

outside the ISR because we need the interrupt to wake us up

from SLEEP, and also because the application may not be ready

to SLEEP when interrupt occurs. The USBErr interrupt notifies

the microcontroller that an error has occurred. The device

requires no action when an error occurs. Instead, the errors

are simply acknowledged and counted. If users wish to pull the

device off of the bus when there are so many errors, users

have to implement them in the application/firmware. USB or

microcontroller does not have a mechanism to do that

independently [14].

How Interfacing Software Works/Behind the Scenes [14]

• The InitUSB clears the error counters and enables the

3.3V regulator and the USB Reset interrupt. This will

make sure the device responds to commands only after the

RESET.

www.manaraa.com

48

• The computer host sees the device and starts the

enumeration process. The RESET will then initializes the

Buffer Descriptors Table (BDT), Endpoint Control

Registers and enables the remaining USB interrupt

sources.

• The interrupt transfers the control to interrupt vector

in 04h.

• The host computer sends a setup token requesting device

descriptor.

• The host sends an IN transaction to receive the data from

the setup transaction.

• This token processing sequence holds true for the entire

enumeration sequence.

Demo Program (Courtesy of Microchip)

·*** '
; Demo program that initializes the USB peripheral, allows the
; host to Enumerate, then copies buffers from EPlOUT to EPlIN.
·*** ' main

call InitUSB
ConfiguredUSB

;set everything so we can enumerate
;wait here until we have enumerated

CheckEPl
bankisel
movlw
movwf
movlw
call
btfss
goto

code host to

PutBuffer

;check Endpoint 1 for an OUT transaction
buffer ;point to lower banks
buffer
FSR ;point FSR to our buffer
1 ;check end point 1
GetUSB ;if data is ready, it will be copied
STATUS,C ;was there any data for us?
PutBuffer ;nope, check again.
process out buffer from host

bankisel buffer ;point to lower banks
;save buffer length

movlw buffer
movwf FSR ;point FSR to our buffer

www.manaraa.com

movlw
call
btfss
goto
goto

end

Conductors

Ox81
PutUSB
STATUS,C
PutBuffer
idleloop

49

;put 8 bytes to Endpoint 1

;was it successful?
;No: try again until successful
;Yes: restart loop

Hardware Interfacing

USB cables have four conductors: VBus, GND, D+ and D-

• VBus is the +SV supply

• D+ and D- are the differential signal pair

• GND is the ground reference for VBus, D+ and D-

Low speed cables don't require shielding or twisted pair

[20]. This enables low speed cables to be very flexible and

without resistance from a stiff cable.

The USB specification requires the following colors and

connections for the conductors:

Pin Conductor Color

1 VBUS (+5V) Red

2 D- White

3 D+ Green

4 GND Black

Shell Shield Drain Wire

Table 4-1 USB Conductor

Connectors

The USB specification describes two connector types

• Type-A plug for the upstream end of the cable

• Type-B plug for the downstream end of the cable

www.manaraa.com

50

The connectors are keyed s o they c a nnot be plugged in

upside - down [20]. The logo is on the topside of the plug .

Figure 4-5 USB Connect o r : Upstream (left) and Downstream
(right)

Cable

The USB specification (versi o n 1 . 0) requires a low speed

wire to be less than 3 meters. · Version 1.1 of the USB dropped

the length specification . The PIC16C745 uses USB 1 . 1.

The USB specification prohibits extension cables, which

would extend the length of a segment by adding a second cable

in series [19] . There is one exception where users can use an

active extension cable consisting o f a hub, a downstream port

and a cable. This will work fine because it contains the

required hub .

Voltages

The nominal v o ltage between the VBUS and GND wires in a

USB cable is 5V but the actual value can be a little more or

quite a bit less [19] . A device that is using bus power must

be able to handle the variati ons and still comply with the

www.manaraa.com

51

specification. If components in the device need a higher

voltage, the device can contain a step-up switching regulator.

Most USB microcontroller chips require a +5V or +3.3V supply.

Components that use 3.3V supplies are handy because the device

can use an inexpensive, low dropout linear regulator, or

diode, to obtain 3.3V.

Power Needs

The USB specification defines a low power device as one

that draws up to l00rnA from the bus and a high power device as

one that draws up to 500rnA from the bus. A self-powered device

has its own power supply and can draw as much power as its

supply is capable of. On power-up, any device can draw up to

l00rnA from the bus until the device is configured. A self-

powered device may also draw up to l00rnA from the bus at any

time. This enables the device's USB interface to function even

when the device's power supply is off [19].

A peripheral that requires up to l00rnA can be bus powered

and will work when attached to any h6st or hub. A peripheral

that requires up to S00rnA can use power from the bus with one

limitation. Not every battery-powered computer and no bus-

powered hub support peripherals that draw more than l00rnA from

the bus [19] .

Transceiver Regulator

USB 1.1 Specification requires the microcontroller to

have a pull-up resistor (l.SkQ ±5%) connected between 0- line

and USB regulator output voltage (VusB) [14] . This drive

current is sufficient for a pull-up only. The VusB is pin 14 in

PIC16C745 and 0- line is pin 15. This requirement is to signal

a low speed device to host computer. And for VusB regulator

www.manaraa.com

52

stability, a ±20% 200nF capacitor has to be connected between

VusB and ground.

PIC16C745

VUSB -
) 1.SK

_L Host
T200nF Controller/

HUB
0- -
D+

Figure 4-5 Transceiver Regulator

Summary

This chapter summarized some definitions that would help

us better understand data transfer. It also presented the way

of interfacing the device/microcontroller to the host

computer, in software and hardware.

Once the data is transferred to the host computer, it is

ready to be used by the computer application, guarded by the

device driver. Chapter 5 of this thesis covers the topics of

host computer and device driver.

www.manaraa.com

53

CHAPTER 5:
HOST COMPUTER

The host computer is responsible for enumerating the

device every time a device is attached to its port. The device

driver located in the host computer is responsible for

managing the data between a device and a computer application.

Universal Serial Bus (USB)

The USB system is much more than a serial port. It is a

serial bus. This means that a single port on the back of the

computer can be the window into a myriad of devices. Devices

can be chained together.

USB is implemented as a Tiered Star Topology, with the

host at the top, hubs in the middle and spreading out to the

individual devices at the end. USB is limited to 127 devices

on the bus and the trees cannot be more than 6 levels deep.

USB is a host centric architecture. The host is always the

master. Devices are not allowed to speak unless spoken to by

the host. Transfers take place at one of two speeds. Full

Speed is 12 Megabytes/sec and Low Speed is 1.5 Megabytes/sec.

Full Speed covers audio/video applications while low speed

supports less data intensive applications, like computer mice

[2 2] .

Low Speed communication is designed for devices, which in

the past used an interrupt to communicate with the host. In

the USB scheme, devices do not directly interrupt the

processor when they have data. Instead the host periodically

polls each device to see if they have any data. This polling

rate is negotiated between the host and device giving the

system a guaranteed latency [22).

www.manaraa.com

54

The basic components of a USB are the host computer, the

devices and the hubs. The hub is used when there are more

devices than available USB ports on the host computer. It

doesn't really matter which devices are attached to which

ports. There is no performance difference between a device

that is 4 hubs away from the computer and one that is attached

directly.

History

The Universal Serial BJS (USB) was first invented by a

group of computer manufacturers and peripheral vendors named

Universal Serial Bus Implementers Forum (USB-IF) in early

1995. The goal of this group was to develop a low to high-

speed technology that would provide a shared-access, highly

available, robust, self-configuring, extensible, and easy-to-

use serial bus to computer owners [21).

In the past, development of a new interface was often the

work of a single company. Hewlett Packard developed the HP

Interface Bus (HPIB), which came to be known as the GPIB

(general-purpose interface bus) and the Centronics Data

Computer Corporation popularized a printer interface that is

still referred to as the Centronics interface. But an

interface controlled by a single company is not ideal. The

company may forbid others from using the interface or charge a

licensing fee. For these reasons, more recent interfaces are

often the product of a collaboration of manufacturers who

share a common interest. In some cases, an organization like

the IEEE (Institute of Electrical and Electronics Engineers)

or TIA (Telecommunications Industry Association) sponsors

committees to develop specifications and publishes the

results. As a matter of fact, many of the older manufacturer's

www.manaraa.com

55

standards have been taken over by these organizations. The

Centronics interface becomes IEEE-1284 standard and GPIB is

the basis for IEEE-488. In other cases, the developers of the

standard form a new organization to release the standard and

handle other development issues. This is the approach used by

USB. The copyright on the USB 1.1 specification is assigned by

Compaq, Intel, Microsoft, and NEC. All have agreed to make the

specification available for use by anyone without charge [21].

The USB 1.0 of the USB specification was released in

January 1996 after several years of development and

preliminary release. The USB 1.1 was released in September

1998 which fixed a problem identified in release 1.0. The

first USB was available on PC with the release of Windows 95.

This version is available only for vendors who installed

Windows 95 on the PCs they sold. The USB became available to

the public in June 1998 with Windows 98. Windows 98 Second

Edition (SE) fixed some bugs and further enhanced the USB

support. This version of Windows 98 was later called Windows

98 Gold [21].

USB Benefits

One I.nterface for Many Devices

Instead of having a different connector and

protocols for each peripheral, one interface serves many

devices [19].

Automatic Configuration

When a user connects a USB peripheral to a powered

system, Windows automatically detects the peripheral and

loads the appropriate software driver. For a non-HID

device, Windows may prompt the user to insert a disk with

www.manaraa.com

56

driver software the first time the device is connected,

but other than that, installation is automatic. There is

no need to locate and run a setup program or restart the

system before using the peripheral [19].

No User Settings

A USB peripheral does not require users to select

any settings. It's all done automatically [19].

Easy to Connect

There is no need to open the computer's box to add

an expansion card for each peripheral. A typical PC has

two USB ports, and if users need more than two ports, a

hub can be connected to an existing port. USB can support

127 devices with up to 6 level deeps (Need a hub for

every level) [19].

Simple Cables

The USB's cable connectors are keyed so they cannot

be plugged in wrong [19].

Hot Pluggable

A peripheral can be connected and disconnected

anytime, whether or not the system and peripheral are

powered, without damaging the PC or peripheral. The

operating system detects when a device is attached and

readies it for use [19].

No Power Supply Required

The USB interface includes power-supply and ground

lines that provide SV from the host computer or hub's

supply [19].

www.manaraa.com

57

Host Computer Duty

1. Detect Devices. In the enumeration process, the host

assigns an address and requests additional information

from each device. After power-up, whenever a device is

removed or attached, the host learns of the event and

enumerates any newly attached device and removes any

detached device from the device's available applications

[2 2] .

2. Manage Data Flow. The host manages the flow of data on

the bus. Multiple peripherals may want to transfer data

at the same time. The host controller handles this by

dividing the data path into 1 ms frames and giving each

transmission a portion of each frame [22).

3. Error Checking. It adds error-checking bits to the data

it sends. When a device receives data, it can perform

calculations on the data and compare the results with the

received error-checking bits. If the results don't match,

the device doesn't acknowledge receiving the data and the

host knows that it should retransmit. In a similar way,

the host may error-check the data it receives from

devices [22).

4. Provide Power. The host provides 5V power to its

peripherals and works with the devices to conserve power

when possible [22).

5. Exchange Data with Peripherals. The host's main job is to

exchange data. In some cases, a device driver requests

the host to poll a peripheral continuously at a requested

rate, while in others the host communicates only when an

application requests it [22].

www.manaraa.com

58

Device Duty

1. Detect Communications. Each device monitors the device

address in each communication on the bus. If the address

matches, the device stores the data in it's receive

buffer and generates an interrupt to signal that data has

arrived. In microcontroller, it's built into the hardware

[2 2] .

2. Respond to Standard Requests. All USB devices must

respond to the eleven standard request codes that query

the capabilities and status of the device and select a

configuration [22).

3. Error Check. Like the host, the device adds error-

checking bits to the data it sends. These functions are

built into the hardware and don't need to be programmed

[2 2] .

4. Manage Power. When there is no bus activity, the device

must enter its low power Suspend State, while continuing

to monitor the bus, exiting the Suspend State when bus

activity resumes [22).

5. Exchange Data with the Host. The host may poll the device

at regular intervals or only when an application requests

to communicate with it. The device must respond to each

poll by sending an acknowledge code (ACK) that indicates

that it received the data, or a negative acknowledge

(NAK) to indicate that it's too busy to handle the data.

The device's hardware sends the appropriate responses

automatically [22).

www.manaraa.com

59

Enumeration

One of the duties of a hub is to detect the attachment

and removal of devices. On system boot-up, the host polls its

root hub to learn if any devices are attached. After boot-up,

the host continues to poll periodically to learn of any newly

attached or removed devices.

On learning of a new device, the host sends a series of

requests to the device's hub, causing the hub to establish a

communications path between the host and the device. The host

then attempts to enumerate the device. Enumeration is the

initial exchange of information that enables the host's device

driver to communicate with the device. The process consists of

assigning an address to the device, reading descriptive data

from the device, assigning and loading a device driver, and

selecting a configuration from the options presented in the

retrieved data. The device is then configured and ready to

transfer data using any of the endpoints in its configuration

[21] .

From the user's perspective, enumeration should be

invisible and automatic, except for in some cases a window

that announces the detection of a new device and whether or

not the attempt to configure it succeeded. For a non-HID

device, the user will need to provide a disk containing the

INF file and device driver at the first use.

When enumeration is complete, Windows adds the new device

to the Device Manager display in the Control Panel. When a

user disconnects a peripheral, Windows automatically removes

the device from the display.

In device removal, the hub again is the component

responsible for telling the host that the device is gone from

the bus. The host disables the port that the device was

www.manaraa.com

60

attached to. The host then updates its internal map of the bus

to reflect the missing device. At this point, the unique

address that the device was using is no longer valid and may

be recycled and given to another newly attached device.

Enumeration Steps [20]

1. The User Plugs a Device into a USB Port. Or the system

powers up with a device already plugged into a port.

2. The Hub Detects the Device. The hub has a 15kQ pull down

resistor on each of the port's two signal lines (D+ and

D-), while a device has a 1.5 kQ pull up resistor on

either D+ (for a full speed device) or D- (for a low

speed device). When a device plugs into a port, the

device's pull up brings that line high, enabling the hub

to detect that a device is attached.

3. The Host Learns of the New Device. Each hub uses its

interrupt pipe to report events at the hub. The report

indicates only whether the hub or a port has experienced

an event.

4. The Hub Resets the Device. When a host learns of a new

device, the host controller sends the hub a request to

reset the port. The hub sends the reset only to the new

device. Other hubs and devices on the bus don't see it.

5. The Hub Establishes a Signal Path Between the Device and

the Bus. At this point, the device can draw no more than

100 mA from the bus.

6. The Hub Detects the Device's Speed. The hub detects

whether the device is high speed or low speed by

determining which line has the higher voltage when idle.

7. The Host Sends a Get_Descriptor Request to Learn the

Maximum Packet Size of the Default Pipe.

www.manaraa.com

61

8. The Host Assigns an Address. The host controller assigns

a unique address to the device. The device reads the

request, returns an acknowledge, and stores the new

address.

9. The Host Learns About the Device's Abilities. The host

sends a Get Descriptor request to the new address to read

the device descriptor.

10. The Host Assigns and Loads a Device Driver. After

the host learns as much as it can about the device from

its descriptors, it looks for the best match in a device

driver to manage communications with the device.

11. The Host's Device Driver Selects a Configuration.

After learning about the device from the descriptors, the

device driver requests a configuration by sending a

Set Configuration request. Many devices support only one

configuration. The device reads the request and sets its

configuration to match. The device is now in configured

state and the device interface is enabled. The device is

now ready for use.

Hubs

Hubs in the USB provide the connection point between

devices and the host. All devices plug into hubs, and hub

plugs into either the host or other hubs, creating a tiered

layer of hubs. It should be noted that the hub is just another

USB device but with special responsibilities. Among its

responsibilities include device connectivity, power management

functions, device attachment/removal detection and bus error

detection. The biggest difference between a hub and a regular

device is that the hub is controlled by host system software,

www.manaraa.com

62

while a regular device is controlled by client software

(microcontroller firmware) [19].

The hub's two main jobs are repeating USB traffic and

managing its devices' connections. Managing the connections

includes getting newly attached devices up and communicating

as well as detecting and blocking communications from

misbehaving devices that could interfere with other devices'

use of the bus [20].

Each hub has two main components: a hub repeater and a

hub controller [20].

The hub repeater is responsible for passing USB traffic

between the host's root hub or another upstream hub and

whatever downstream devices are attached and enabled. The hub

repeater also detects when a device is attached and removed,

establishes the connection of a device to the bus, detects bus

faults such as over-current conditions, and manages power to

the device.

The hub controller manages communications between the

host and the hub repeater. As it does for all devices, the

host enumerates a newly detected hub to find out its

abilities. Hubs are also responsible for disabling any port

responsible for loss of bus activity.

States on Ports

A downstream port on a hub is, at any given time, in one of

several possible states [20].

• Powered off - no power applied to device

• Disconnected - device is not logically connected to the

USB

• Disabled - device may be attached to port but it isn't

being recognized

www.manaraa.com

63

• Enabled - device is attached to the port and can be used

• Suspended - device is attached but is in SLEEP mode

Powered Off State

A port is set to the powered off state at the request of

the host. This setting is normally used when the host goes

into a power saving mode, such as a laptop going into a

suspended state. All of the electrical signals from a port

that is in the powered off state are ignored by the hub. The

port is treated as dead in this state and all upstream

activity from that port to the host is ignored.

Disconnected State

A hub port is in the disconnected state when the port has

power but has no device attached. A port transitions from the

powered off state to the disconnected state when the host

tells the hub to apply power to the port. When a port is in a

disconnected state, it doesn't communicate in either the

upstream or downstream directions. The port can, however,

detect a connect event. A connect event is triggered when a

device is plugged into a port on the hub.

Disabled State

A port is put into the disabled state when the hub

detects a device being attached. This assumes that the port is

currently in the disconnected state, which means that it must

be powered on. A device plugged into a port that is in the

disabled state cannot talk to the host, but the host can talk

to it through the use of a reset signal.

www.manaraa.com

64

Enabled State

A port transitions to the enabled state when the host

tells the hub to put the port into the enabled state. This is

done as part of the enumeration process, where the USB device

is actually recognized by the host computer. Since the port

can transition to the enabled state only from the disabled

state, the port can never become enabled if there is no device

attached to it.

Suspended State

A device can be temporarily put into a suspended state to

keep power from being applied to it. This is different from

the powered off state. The suspended state is used when no

device is attached to the port. A hub port can be put into the

suspended state by either the host requesting that it happen

or the device deciding it wants to be suspended.

Device Driver

A device driver is a software component that enables

applications to access a hardware device. In the most general

sense, a device driver is any code that handles communication

details for a hardware device that interfaces to a CPU.

When Windows detects a new USB peripheral, one of the

things it has to do is to figure out which device driver

applications should use to communicate with the device, and

then load the selected driver. This is the job of Windows'

Device Manager.

The Device Manager is a Control Panel menu that is

responsible for installing, configuring and removing devices.

The Device Manager also adds information about each device to

the system registry, which is the database that Windows

www.manaraa.com

65

maintains for storing critical information about the hardware

and software installed on a system.

The INF file is a text file containing information that

helps Windows identify a device. The file tells Windows what

driver or drivers to use and what information to store in the

registry [20].

When Windows enumerates a new USB device, the Device

Manager compares the data in all of the INF files with the

information in the descriptors retrieved from the device on

enumerating. To prevent having to read through the files

themselves each time a new device is detected, Windows

maintains a driver information database with information

called from the INF files.

Human Interface Devices (HID) Driver

On PCs running Windows 98 or later, applications can

communicate with peripheral devices using the drivers built

into the operating system called HID Drivers [20]. The HID

driver has defined report formats for mice, keyboards, and

joysticks. The only requirement of HID is that the device must

conform to the requirements of HID class descriptors, and the

device must send and receive data using interrupt or control

transfers as defined in the HID specification. The device in

this project uses a HID driver.

For the host's drivers to communicate with a HID, the

device's firmware must meet certain requirements. The device's

descriptors must identify the device as having a HID

interface, and the firmware must support an interrupt IN

endpoint in addition to the default control pipe. The firmware

must also contain a report descriptor that defines the format

for transmitted and received device data [20].

www.manaraa.com

66

All device data transferred by a HID must use a defined

report format that describes the size and contents of the data

in the report [20]. Devices may support one or more reports. A

report descriptor in the device's firmware describes the

reports, and may include information about how the receiver of

the data should use it. Feature reports always use control

transfers.

HID Specifications [20]

1. The data exchanged resides in structures called reports.

The device's firmware must support the HID report format.

The host sends and receives data by sending and

requesting reports in control or interrupt transfers.

2. Each transaction can contain a small to moderate amount

of data. For a low speed device, the maximum is 8 bytes

per transaction.

3. A device may send information to the computer at

unpredictable times. The host's driver polls the device

periodically to obtain new data.

4. The maximum speed of transfers is limited. A low speed

device can have no more than 1 transaction per l0ms, or

800 bytes per second.

5. There is no guaranteed rate of transfer. If the device is

configured for l0ms intervals, the time between

transactions may be any period equal to or less than

this.

www.manaraa.com

67

Device Manager

The Device Manager is responsible for adding attached

devices to the Control Panel display. The Device Manager

display shows only the USB devices that are currently

detected. Users can unplug a device while viewing the display

and watch the device's listing disappear. Plug the device back

in, and its listing pops back.

If a newly attached device uses the standard HID drivers,

it doesn't need its own INF file to identify it [20]. On the

first attachment, the Device Manager will determine that the

device is HID class, and when it can't find a Vendor and

Product ID match, will decide that the generic HID drivers are

the best fit available. The Device Manager will run Add New

Hardware Wizard as usual to give users a chance to select a

better driver. When users accept default selections, Windows

looks for a driver in the INF directory, selects the INF file

for the HID class and loads the HID drivers. The Device

Manager lists the device as a Standard HID Device with no

indication of its specific function or manufacturer.

Summary

This chapter provided some background on USB. The chapter

also presented the way the data is handled. It also mentioned

that the device in this project uses Human Interface Device

(HID) driver to communicate with applications in the host

computer. All aspects of the design have been covered. Chapter

6 explains the final assembly of the device.

www.manaraa.com

68

CHAPTER 6:
FINAL ASSEMBLY

Sensor

Four FlexiForce™ sensors are used to transduce input

force into resistance/current. These sensors do not need power

to operate. The sensors have three pins with the middle pin

inactive. Sensor A and sensor Bare for horizontal motion

while sensor C and sensor Dare for vertical motion. These

four sensors are placed as below:

Figure 6-1

,E)',C: I \
I \

/ I .,..-,
I I ,,, \
I I f \
I I I \
I I / I
I I I I
I I I I
f I I I
I I I I
J I I I
I I I I

: I : :
I : 11 I I
I I I
I I I
I I I
I I I
I
I
I
I
I

\ I
\ I ,~

I I

' i 1, I
I I
I I
I I
,_)

Placement of the Sensors

One rocker switch is also used for a left click and right

click button. This button has to be shorted to ground.

From the Weimer study [4], the typical time of neural

transmission to brain was 2-100 msec, while the neural

transmission to muscle was 10-20 msec. So the time taken by

sensor to sense the input, to transfer and process the data

should be less than the time of neural transmission from and

to the brain.

www.manaraa.com

69

Hand-Eyes Coordination

The objective population of this device was to the users

of the regular mice. The users of the regular mice have

mastered their hand-eyes coordination so that the motion of

the cursor may be performed without any appreciable conscious

effort [23]. They learned from the very beginning that if the

mice were moved the right, the cursor will move to the right

on the screen, and etc. This process of visual motor skill

started from the very early age of the person.

The users for this device will go through the same

process of learning. The position of the sensors were arranged

the way they were to help the users learn the process faster.

Although the 'modus operandi' of this device was by squeezing,

the arrangement of the sensors might somewhat help. The users

used to move the mice to right to move the cursor to the right

on the screen. In this device, the users are supposed to press

the right sensor to move the cursor to the right.

One study says that humans learn a hand-eyes process

faster if the motion of the hand is at the same direction of

the movement of the eyes [23]. In this case the motion of the

eyes is always at the same direction as the direction of the

cursor on the screen. Although the device does not use the

same 'modus operandi' as hand motion, the position of the

sensor might somewhat help the users to learn the process

faster.

The human memory has two parts: short term and long term

[24]. The short-term memory is like a RAM in computer. The

short-term memory loses its content unless it is refreshed

every 200 ms. The long term memory is the main file store of

the human system. The cognitive files are one example of the

files stored in the long-term memory, which is used to

www.manaraa.com

70

instruct the muscles for movement. The hand-eyes coordination

is one of the cognitive files.

Excitation Circuit

The excitation circuit converts input current from the

sensors into a voltage. The four outputs (Vtta, Vttb, Vttc and

Vttct) from this circuit then are sent into the microcontroller.

Instead of using four single output op-amps (LM 124), one

quad op-amp (LM 324) is used in this circuit. The op-amp is

powered by 5-volt USB power line. In addition to a 100 kQ

resistor, a 0.1 µF capacitor is added in this circuit to

reduce noise from surroundings. The noise could come from

power lines and the electromagnetic noise of the circuit.

A 2.5-volt reference voltage circuit is also added here.

The circuit consists of an LM336-2.5 diode and a 2.2 kQ

resistor. The 2.5-volt reference is connected to the inverting

(positive) pin of the quad op-amp. This means that the output

of the excitation circuit (V~f) will be 2.5-volt at no load and

down to 0-volt at full load.

LM324

Vffa Quad Vffd
Op-Amp

+SV

Output 1 Output 4
+SV Input 1- Input 4-

Input 1 + Input 4+
V+ V-

¢. Input 2+ Input 3+
Input 2- Input 3-
Output 2 Output 3

+SV
Vffb Vffc

Figure 6-2 Excitation Circuit

www.manaraa.com

71

+5V

R5

2.2k

--c=::>2. 2Jr~61 t
D1

LM336-2.5

Figure 6-3 Reference Voltage Circuit

Microcontroller circuit

The four inputs (Vua, Vttb, Vttc and V:"'fct) are connected to

pins ANO, ANl, AN2 and AN4 of the PIC16C745 microcontroller

respectively. The other two inputs (left and right button) are

connected to RB0 and RBl of the PIC16C745 microcontroller

respectively. This button has to be shorted to ground.

A 6 MHz resonant quartz crystal for the oscillator is

connected between pin OSCl and OSC2 of the microcontroller.

Two other 33 pF capacitors are also added into this circuit.

A transceiver regulator circuit has been added into the

circuit per USB 1.1 Specification. The circuit consists of one

1.5 kQ resistor and one 200 nF capacitor. The regulator

circuit is used to signal to the host computer that the device

is a low speed device. The circuit is also used for VusB

stability.

The 2.5-volt reference voltage is also connected between

VREF pin and Vc:s pin of the microcontroller. This voltage will

be used as a reference voltage in analog-to-digital

conversion. A capacitor is added for stability and to reduce

noise.

A 5-volt power is connected between Voo pin and Vss to

power up the microcontroller. Per Microchip specification, two

other capacitors (0.1 µF and 10 µF) are added to stabilize the

incoming power and also to reduce noise.

www.manaraa.com

72

A 5-volt power is connected to the MCLR pin for the reset

function.

The D+ pin and D- ~in are directly connected to the back

of the host computer, so are the 5-volt power line and the

Ground (GND) .

+SV

R6
10k

Vref

Figure 6-4

PIC16C745

MCLRNpp RB7
RAO/ANO RB6
RA1/AN1 RB5
RA2/AN2 RB4
RA3/AN3Nref RB3
RA4/TOCKI RB2
RA5/AN4 RB1
Vss1 RBO/INT
OSC1/CLKIN Vdd
OSC2/CLKOUT V&s2
RCO/T1OSO/T1CKI RC7/RX/DT
RC1/TC10SI/CCP2 RC6/TX/CK
RC2/CCP1 D+
Vusb D-

R7

1.5k

Microcontroller

Internal Box

Circuit

Right Button
Left Button

C10
10uF

+5V
D+
D-
GND

A 40mm x 40mm x 38mm aluminum box is used to hold the

sensors, reference voltage circuit and excitation circuit

inside the main shell. The box includes a platform for the

rocker switch and also for the actuator to work on.

www.manaraa.com

73

Figure 6-5 3-D View of the Internal Box

·ol"l
361"1

I 341"1 I
I I -
I I '1

I
I
I
i

i ; I

14 M
1

34f'lf'I 361"11'1 401'1 rl'l I
i
I
i
I
I
I, I Lt ;

l-Lr-ir-i -12f'l

Figure 6-6 Top View of the Internal Box

www.manaraa.com

74

14Mrn-----t"""
I
I
I
I
I
I
I
I

---~ ~------~ L---------------

r- ---- ---- ---- -------- ---- ---- -------- ---- ---,
I I
I I
I I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

I
I
I
I
I
I
I
I
I
I ~---
' ----- ---'--,---,~
I

Figure 6-7 Front View of the Internal Box

I
I
I
I
I
I
I
I
r
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

===1
6MM '

Figure 6-8

38MM

Side View of the Internal Box

www.manaraa.com

75

Cover Plate

The cover plate was used to close the internal box on the
bottom.

Figure 6-9 3-D View of the Cover Plate

---------40M1m,~----------1-.
-------36M1m,-------~
.-..-----34Mil'V'r-·------i~

1

I
-,---+--++--- I

4DMM 36Mri 34rm
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

I ~--+-~--~

Figure 6-10 Top View of the Cover Plate

www.manaraa.com

76

:
1 13 2Mrril I I ...____ __ lri

lM

Figure 6-11 Side View of the Cover Plate

Switch Box

Switch box was glued on the side of the internal box to

provide a space for the right-left rocker switch.

Figure 6-12 Switch Box with the Internal Box

Figure 6-13 3-D View of the Switch Box

www.manaraa.com

77

?2 , .. - M 1"·1

20MM -1

17 'YIM 15 "f'JM

--l L--")

Figure 6-14 Top View of the Switch Box

I I

I
I
I
I
I
I ----- ____ J

- - --. --:: 'V'

Figure 6-15 Front View of the Switch Box

www.manaraa.com

I
I
I

-;

3MM:

78

Figure 6-16 Side View of the Switch Box

Actuator

The actuator was placed on the top of the internal box.

The actuator was used to transmit the force exerted by the

users to the force sensors. This will make the force to be

fully distributed among the sensors rather than concentrated

at just one sensor. The actuator was also used to make it

easier for the users to control the direction of the cursor.

Instead of having to press the sensor exactly on top of

which is so difficult, the users just need to press the

actuator at the direction they want the cursor to move,

without having to worry about the location of the press.

' +-l '-,

www.manaraa.com

79

Figure 6-17 3-D View of the Actuator

-------OMm-------

-------7
I
I
I
I
I _______ J

I
I
i
i I _______ I

r------
1
I
I
I
I [_ _____ _

40 I"!

Figure 6-18 Top View of the Actuator

www.manaraa.com

80

Figure 6-19 Side View of the Actuator

External Box

A 60mm x 50mi'TIITl x 30mm plastic external box is used to

hold the microcontroller circuit.

Figure 6-20 3-D View of the External Box

www.manaraa.com

81

R0.2Ml"l
+

J_ I
_ _j L_

· 4.01'1M0.4Ml'l I I
! I

T -7 I--
I I
I I
I I
I I
I I
I I
I I
I I

~---1--L-------------------------~
0

-
I _5.0MM--, .I

6.IJMM ------------i.

Figure 6-21 Top View of the External Box

0.JMM J
I I

--7 r--
1 I
I I
I I
I I
I I

3,0MM I I

: :
I I
' I

--~-------------------------~

~0.5MM

Figure 6-22 Front View of the External Box

www.manaraa.com

82

J_~-----r-----r-,

• 0,3MM _J ----j t--o.4r-w1
~~,------~ I

I I DAMM
I
I
I t
I
I
I
I
I
I
I
I I
L--------------------~

Figure 6-23 Side View of the External Box

Main Shell

Per ISO 9241 requirement for non-keyboard input

device/mouse, the overall size of the mouse should be [5]:

1. Sensor - located under fingers

2. Button motion - coincident to finger motion

3. Width - 4 0mm minimum and 7 0mm maximum

4. Length - 7 0mm minimum and 12 Om...rn maximum

5. Height 25mm minimum and 40mm maximum

From a study done by Jon Weimer [4], the average grasp

dimensions was 55mm with the maximum at 110mm. This study was

based on a 50/50 ratio of men to women. From the same study by

Weimer, the average thumb breadth was 21mm with 0.95

percentile at 25mm.

www.manaraa.com

83

Figure 6-24 Method Used by Weimer to Measure the
Dimension of the Grasp

A soft polyester-made shell is used to hold the internal

box and serve as the main shell. Users will be squeezing this

shell to operate the device.

Figure 6-25 3-D View of the Main Shell

www.manaraa.com

84

43Ml"I 3 M
-----75Mm-----

-----h0Ml'I------,

17 l'1

Figure 6-26 Top View of the Main Shell

2[M

SM r-

Figure 6-27 Front View of the Main Shell

www.manaraa.com

85

I

51'll"l

Figure 6-28 Side View of the Main Shell

Figure 6-29 Orientation of the Fingers

www.manaraa.com

86

Assembling

These were the steps in assembling:

1. The excitation circuit and reference voltage circuit

were built and then inserted into the internal box

with the exception that the rocker switch was inserted

into the switch box.

2. The actuator was placed on the top of the internal

box.

3. The output cable from the excitation circuit was

allowed to come out from the internal box through the

hole at the bottom of the box. The cover plate then

was used to close the box at the bottom.

4. The whole assembly was put inside the outer shell.

5. The microcontroller circuit was built.

6. The microcontroller circuit was placed inside the

external box.

7. The output cable of the microcontroller circuit was

allowed to come out through the nole on the top of the

box. The Phillip screws were then used to seal the box

and the cap.

8. The output cable of the microcontroller was then

connected to a standard USB upstream connector.

9. The connector was ready to be plugged into the USB

port at the back of the computer.

www.manaraa.com

87

/1/~~
E2i .~ [SJ. >,, , ,,

--
/

- , -
.; ,,,.

Figure 6-30 Internal Core Assembly

Figure 6-31 Overall Assembly

www.manaraa.com

88

Device Driver

The device uses a Human Interface Device (HID) from

Window as the driver. Therefore, the user does not need any

additional driver to operate the device. The enumeration will

happen automatically without user intervention.

In addition, the USB 1.1 Specification can be found at

http://www.usb.org/developers/data/usbspec.zip .

Microcontroller Firmware

A PICSTART PLUS development programmer kit from Microchip

Inc. is used to install the firmware inside the

microcontroller. The kit includes MPLAB IDE compiler and all

necessary hardware to program the firmware and to connect to

computer via a serial RS-232 port. The configuration bits are

set as follow:

• Oscillator H4

• Watchdog Timer Off

• Power Up Timer Off

• Code Protect Off

PIC16C745

+5V Voo

ov Vss
VPP MCLR/VPP
CLK RB6

DATA
~7

Voo -
Figure 6-32 Programming Connection

www.manaraa.com

89

The MPLAB IDE Compiler converts the firmware, input by

programmer, from an assembly file to a hexadecimal file. Then

the PICSTART PLUS stores these hexadecimal files into the

microcontroller.

The five hexadecimal files are:

1. USB Main.asm

The main program of the device. The main algorithm

of the mouse movement was inserted in this file.

2. USB Ch9.asm

Consists of core functions needed to enumerate the

device. It also contains the functions that service

the USB, send data to the host computer, and

receive data from the host computer.

3. HidClass.asm

Provide the functions for HID Class specific

commands.

4. Descript.asm

Contain a set of descriptors for a standard mouse.

5. USB Defs.inc

Contains several microcontroller specific functions

including ConfigUSB, PutEPl, PutEP2, GetEPl, and

GetEP2. This file works together with USB Ch9.asm

file.

All five files were obtained from Microchip. The only

change made was that the additional mouse movement algorithm

was added in USB_Main.asm to meet the requirement for the new

device. These five files were originally from the previous

Microchip USB firmware, which demonstrated a circular cursor

movement. The original files can be found at http://www.

microchip.com/download/appnote/firmware/usb124as.zip .

www.manaraa.com

90

Other than the five files above, a linker file for

PIC16C745 was also added. The PICSTART Plus will ask during

the programming whether the linker file should be included and

it can be easily found from PICSTART Plus Library and

programmed into the microcontroller. The linker file is used

to support the hexadecimal file inside the microcontroller.

Device Testing

Per ISO 9241, there are several testing that could be

done for non-keyboard input device [5]. They are:

1. One-direction tapping test - pointing and moving cursor

along one axis. For example inserting a cursor at point

along a character string.

2. Multi-directional tapping test - pointing in different

directions. For example repositioning cursor at different

areas.

3. Dragging test - clicking and dragging to specific

locations. For example inserting, clicking and dragging

cursor along a string of text to highlight it.

4. Tracing test - clicking and dragging objects to specific

locations or duplications shapes. For example duplicating

lines or shapes area filling of objects.

5. Freehand input test - hand drawn images. For example

graphics creation.

6. Grasp and park test - moving the cursor to a specific

location on the screen and using a key on the keyboard to

click the cursor into place. For example numeric data

entry in a spreadsheet.

www.manaraa.com

91

-Manufacturing

The manufacturing process can be divided into two parts .

Part 1 consists of all the circuits and connection. Part 2

consi s ts of manufacturing the core and the shell .

Part 1

For research purpose , all the connection in the

excitation circuit and reference voltage circuit were done

using regular electronic wires and connector ports . In the

r e al manufacturing , the s e components are replaced by a

Prototype Circuit Board (PCB) which is smaller in size .

Figure 6-33 Prototype Circuit Board (PCB)

For research purpose too, the regular ceramic resistors

and capacitors were used . In the real manufacturing, these

components are replaced by much smaller chip resistors and

capaci tors . These components are solde r ed directly onto the

PCB.

www.manaraa.com

92

Figure 6-34 Ceramic Resistors and Capacitors

Figure 6-35 Chip Resistors and Capacitor s

The microcontroller used in this research was an

Electrically Erasable Programmable Read Only Memory (EEPROM)

microcontroller . The firmware inside the microcontroller can

be reprogrammed again and again . The microcontroller was

connected to the other components through a PCB suppl i ed by

Microchip. In the real manufacturing , the much cheaper One

Time Programmable (OTP) microcontroller is used . The same PCB

is used to connect the microcontroller t o other components o f

the circuit .

www.manaraa.com

93

Part 2

The internal box, cover plate, actuator and switch box

were made from aluminum. Each component was manufactured

separately through milling process. The switch box was.then

glued on the top of the internal box.

The outer shell was made from polyester. The inside

cavity was done using a knife and scissor. The glue was used

to attach the three parts of the outer shell together.

The external box was made from plastic through casting

process. Four 8mm Stainless Steel Phillips screws were used to

fasten the cover plate of the box to the body of the box.

www.manaraa.com

94

Part List

Name Quantity

PIC16C745 Microcontroller 1

Flexiforce Sensor 4

LM324 Quad Op-Amp 1

6 MHz Crystal 1

LM336-2.5 Diode 1

100 kQ Resistor 4

2.2 kQ Resistor 1

10 kQ Resistor 1

1.5 kO Resistor 1

0.1 µF Capacitor 5

33 pF Capacitor 2

3.3 µF Capacitor 1

200 nF Capacitor 1

Plastic External Box 1

Aluminum Internal Box 1

Aluminum Actuator 1

Aluminum Cover Plate 1

Aluminum Switch Box 1

Polyester Outer Shell 1

Electrical Wire 2 meter

Screws for External Box 4

USB Connector 1

Table 6-1 Part List

www.manaraa.com

95

APPENDIX A: PIC16C745 Block Diagram

EPROM
Program
Memory
SK x 14bits

Program
Bus

Instruction Req

Instruction
Decode &
Control

Timing
Generation
X4 PLL

OSCl/ OSC2/
f'T.KTN ('T,Knfl'T'

Timer0 Timerl

CCP2 CCPl

Proqram Counter

8 Level Sta::::k

Data Bus

RAM
File
Registers
256K x Sbits

Address Multiplexer

FSR Reo

STATUS Req

Multiplexer

Power-up
1'imPr

Oscillator
Start-up
Timer

Power-on
RPcsPt-

Watchdog
rr-i mpr

Brown-out
ppc,pj-

VDD, Vss

Timer2 8-bit Ai,,
I LI •

USART Dual Port RAM
64K X Bbits

USE

Port A

RZ\0/AN0
RAl/ANl
RA2/AN2
RA3/AN3/VREF
RA4/TOCKI
RA5/AN4

Port B

RB0/INT
RBl
RB2
RB3
RB4
RBS
RB6
RB7

Port C

RC0/TlOSO/TlCKI
RC1/T1OSI/CCP2
RC2/CCP1
RC6/TX/CK
RC7/RX/DT

VUSB

GND

D+

D-

XCVR

www.manaraa.com

96

APPENDIX B: PIC16C745 Pin Description

Name Function Description
MCLR Master Clear MCLR/Vpp Vpp Programming Voltage

OSCl/CLKIN OSCl Crystal/Resonator
CLKIN External Clock Input

OSC2/CLKOUT OSC2 Crystal/Resonator
CLKOUT External Clock (FINT / 4) Output

RAO/ANO RAO Bi-directional I/O
ANO A/D Input

RAl/ANl RAl Bi-directional I/O
ANl A/D Input

RA2/AN2 RA2 Bi-directional I/O
AN2 A/D Input
RA3 Bi-directional I/O

RA3/AN3/VREF AN3 A/D Input
VREF A/D Positive Reference

RA4/TOCKI RA4 Bi-directional I/O
TOCKI Timer 0 Clock Input

RAS/AN4 RAS Bi-directional I/O
ANS A/D Input

RBO/INT RBO Bi-directional I/O
INT Interrupt

RBl RBl Bi-directional I/O
RB2 RB2 Bi-directional I/O
RB3 RB3 Bi-directional I/O
RB4 RB4 Bi-directional I/O
RBS RBS Bi-directional I/O

RB6 Bi-directional I/O
RB6/ICSPC

ICSPC In-Circuit Serial Programming
Clock Input

RB7 Bi-directional I/O
RB7/ICSPD ICSPD In-Circuit Serial Programming

Data I/O
RCO Bi-directional I/O

RC0/TlOSO/TlCKI TlOSO Timer 1 Oscillator Output
TlCKI Timer 1 Clock Input
RCl Bi-directional I/O

RCl/TlOSI/CCP2 TlOSI Timer 1 Oscillator Input
CCP2 Capture In/Compare out/PWM Out 2

RC2/CCP1 RC2 Bi-directional I/O
CCPl Capture In/Compare out/PWM Out 1

VusB VusB Regulator Output Voltage

www.manaraa.com

97

D- 0- USB Differential Bus
D+ D+ USB Differential Bus

RC6 Bi-directional I/0
RC6/TX/CK TX USART Async Transmit

CK USART Master Out/Slave In Clock
RC7 Bi-directional I/0

RC7/RX/DT RX USART Async Receive
OT USART Data I/0

VDD VDD Power
Vss Vss Ground

www.manaraa.com

98

APPENDIX C: PIC16C745 Data Memory Map

Bank 0 Addr. Bank 1 Addr. Bank 2 Addr. Bank 3 Addr.
Indirect 00h 1 Indirect son Indirect 100h Indirect 180h
Addr. Addr. Addr. Addr.
TMR0 0lh OPTION FEG 81h TMRO 101h OPTION REG 181h
PCL 02h PCL 82h PCL 102h PCL l82h
STATUS 03h STATUS 83h STATUS 103h STATUS 183h
FSR 04h FSR 84h FSR 104h FSR 184h
PORTA 05h TRISA 85h 105h 185h
PORTB 06h TRISB 86h PORTB 106h TRISB 186h
PORTC 07h TRISC 87h 107h 187h >, ...

. ;····••···· 08h 88h 108h 188h
·.•· 09h 89h 109h 189h

PCLATH 0Ah PCLATH 8Ah PCLATH l0Ah PCLATH 18Ah
INTCON 0Bh INTCON 8Bh INTCON l0Bh INTCON 18Bh
PIRl 0Ch PIEl 8Ch l0Ch 18Ch
PIR2 0Dh PIE2 8Dh l0Dh l8Dh
TMRlL 0Eh PCON 8Eh l0Eh 18Eh
TMRlH 0Fh 8Fh l0Fh 18Fh
TlCON 10h 90h ll0h UIR 190h
TMR2 llh 91h lllh UIE 191h
T2CON 12h PR2 92h 112h UEIR 192h

·. 13h 93h 113h UEIE 193h
.··· 14h 94h 114h USTAT 194h

CCPRlL lSh 95h 115h UCTRL 195h
CCPRlH 16h 96h 116h UADDR 196h
CCPlCON 17h 97h 117h USWSTAT 197h
RCSTA 18h TXSTA 98h 118h UEP0 198h
TXREG 19h SPBRG 99h 119h UEPl 199h
RCREG lAh 9Ah llAh UEP2 19Ah
CCPR2L lBh 9Bh llBh 19Bh
CCPR2H lCh 9Ch llCh 19Ch
CCP2CON lDh 9Dh llDh 19Dh
ADRES lEh 9Eh llEh 19Eh
ADCON0 lFh ADCONl 9Fh llFh 19Fh
General 20h General A0h General 120h USB Dual lA0h
Purpose Purpose Purpose Port
Register Register Register Memory

96 Bytes 80 Bytes 80 Bytes lDfh
lE0h

EFh 16Fh
lEFh

7Fh Accesses F0h Accesses 170h Accesses lF0h
70h-7Fh FFh 70h-7Fh 17Fh 70h-7Fh lFFh

www.manaraa.com

99

APPENDIX D· MICROCONTROLLER FIRMWARE
Usb main.asm

Software License Agreement

The software supplied herewith by Microchip Technology Incorporated (the "Company")
for its PICmicro(r) Microcontroller is intended and supplied to you, the Company's
customer, for use solely and exclusively on Microchip PICmicro Microcontroller
products.

The software is owned by the Company and/or its supplier, and is protected under
applicable copyright laws. All rights are reserved. Any use in violation of the
foregoing restrictions may subject the user to criminal sanctions under applicable
laws, as well as to civil liability for the breach of the terms and conditions of
this license.

THIS SOFTWARE IS PROVIDED IN AN "AS IS" CONDITION. NO WARRANTIES, WHETHER EXPRESS,
IMPLIED OR STATUTORY, INCLUDING, BUT NCJI' LIMITED TO, IMPLIED WARRANTIES OF
MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE APPLY TO THIS SOFTWARE. THE
COMPANY SHALL NOT, IN ANY CIRCUMSTANCES, BE LIABLE FOR SPECIAL, INCIDENTAL OR
CONSEQUENTIAL DAMAGES, FOR ANY REASON WHATSOEVER.

;###
filename: USB MAIN.ASM

USB Mouse Project. Developed by John P. Burns and Brenton D. Rothchild
on contractual basis for Iowa State University ("ISU"). Any
applicable intellectual property, copyrights, or other protections
of this software are owned by ISU.

[Microchip's original description of supplied software:
[This file implements a basic interrupt service routine and shows how the
[USB interrupt would be serviced, and also how InitUSB and PutUSB
[should be called. It may be used as a reference, or as a starting point
[from which to build an application.

This file uses Microchip's USB sample firmware (as described above), and implements
ADC routines with averaging math to compute output values for a USB mouse.

;###

Microchip's original software comments:
Author: Dan Butler and Reston Condit
Company: Microchip Technology Inc

Revision:
Date:
Assembled using:
Configuration Bits:
Revision History:
23 August 2000
24 August 2000

28 August 2000
20 March 2001
20 March 2001

29 March 2001
02 May 2001

03 August 2001

1.24
5 March 2002
MPASM 2.61
H4 Oscillator, WDT Off, Power up timer off

DZB Changed descriptor pointers to 16 bits.
DZB Moved EPl & 2 configuration from USBReset

to Set_Configuration to implement requirement in
USB Vl.1 spec paragraph 5.3.1.2

DZB Force data toggle on OUT packets in PutUSB
DZB Reduced use of common RAM
DZB Put and Get use their own temp variable (GPtemp) to

avoid collisions with the ISR's use of temp.
DZB Fixed saving of bank bits in GetUSB
DZB Implemented SHOW_ENUM_STATUS to show enumeration

status on the PORTB LEDs: 0- Powered, 1- Default,
2- addressed, 3- configured, 4- sleep,
5- EPU Activity, 6- EPl Activity, 7- EP2 Activity

RAC Made distinct GetEP and PutEP macros for endpoints l
and 2. These functions are GetEPl, GetEP2, PutEPl, and
PutEP2. Instancec of the these macros are created in
usb ch9.asm.

www.manaraa.com

08 August 2001
15 August 2001

08 September 2001

15 January 2002

01 February 2002

14 February 2002

25 February 2002

05 March 2002

100

RAC Corrected various banking and paging issues.
RAC Added Report_desc_index function in descript.asm.

This function allows more than one report descriptor
to be used.

RAC Correctly set DATA0/1 bit (BDndST:<6>) in
Set_Configuration (usb_ch9.asm). It wasn't being set
before.

RAC BDOOST was being written to after control was given
to the SIE in HID SET REPORT. This was fixed.

RAC Made sure this version was consistent with the C
version of the firmware. Misc changes.

RAC Corrected USBSleep and USBActivity to suspend and
unsuspend the SIE respectively

RAC Remote Wakeup initialization was moved from a
PORTE interrupt to the RA4 pin. The move was made
because this firmware uses PORTE for USE status
outputs. RA4 is a b~tton on the PICDEM USE board.
For users who don't have the PICDEM USE PCB, RA4 is
active low.

RAC Clear <UCTRL: SUSPND> bit in USBActivity rather than
setting it.

Authors: John P. Burns, Brenton D. Rothchild, Troy Benjegerdes

Revision:
USE Firmware Rev.:
Date:
Assembled using:
Revision History:
25 July 2002
26 July 2002
27 July 2002
28 July 2002

1. 12
1. 24
28 July 2002
MPASM 2.61

BDR,JPB Started with USE Firmware, added ADC code.
BDR,JPB Removed Remote Wakeup capability from USE Firmware.
BDR,TB Added averaging routines, test mode capability.
BDR Code freeze for revision 1.12.

;##

include files:
Pl6C765.inc
usb defs.inc

Rev 1.00
Rev 1. 10

;##
#include
#include

<pl6c745.inc>
"usb defs.inc"

CONFIG H4 OSC & WDT OFF & PWRTE OFF & CP OFF

unbanked
w save

bankO
Status save
PCLATH save
FSR save
CUR STAT
BUFFER
COUNTER
INNER
OUTER
input
a h
a 1
offset
templ
temph
FIXEDO
FIXEDl
TESTMODE
temp

udata shr
res

udata
res
res
res
res
res
res
res
res
res
res
res
res
res
res
RES
RES
RES
RES

1

1
1
l
1
8
l
1
1
4
4
4
1
l
1
l
1
1
1

register for saving W during ISR

registers for saving context
during ISR

Direction cursor moves on the screen
Location for data to be sent to host
General counter variable
Loop control variable
Loop control variable
4-byte input variable for 4 channels
4-byte average (high bytes)
4-byte average (low bytes)
Channel offset variable
Low byte temp variable
High byte temp variable
Fixed value for Test Mode
Fixed value for Test Mode
Test Mode variable
General temporary variable

www.manaraa.com

extern
extern
extern
extern
extern
extern

STARTUP code
pagesel
goto
nop

InterruptServiceVector

InitUSB
PutEPl
GetEPl
ServiceUSBint
CheckSleep
RemoteWakeup

Main
Main

movwf W save
movf STATUS,W
clrf STATUS
movwf
movf
movwf
movf
movwf

Status save
PCLATH,W
PCLATH save
FSR,W
FSR save

Interrupt Service Routine

101

Remote Wakeup wo~ks with the use of the RA4
pin (active low)

save W

force to page 0
save STATUS

save PCLATH

save FSR

First we step through several stages, attempting to identify the source
of the interrupt.
~***************

Process ISR
Step 1, what triggered the interrupt?

btfsc
nap
btfsc
nap

TEST INTCON
btfsc
nop
banksel
pagesel
btfsc
call

TEST PIRl
btfsc
nop
btfsc
nop
btfsc
nap
btfsc
nap
btfsc
nap
btfsc
nap
btfsc
nap

INTCON,T0IF

INTCON,RBIF

INTCON,INTF

PIRl
ServiceUSBint
PIRl,USBIF
ServiceUSBint

PIRl,ADIF

PIRl,RCIF

PIRl,TXIF

PIRl, CCPlIF

PIR1,TMR2IF

P:CRl, TMRlIF

PIR2,CCP2IF

Timer 0

Port B

External Interrupt

USB interrupt flag
Service USB interrupt

AD Done?

End ISR, restore context and return to the Main program
**

EndISR
clrf
movf
movwf
movf

STATUS
FSR_save,W
FSR
PCLATH save,W

select bank 0
restore the FSR

restore PCLATH

www.manaraa.com

movwf
movf
movwf
swapf
swapf
retfie

code

PCLATH
Status save,W
STATUS
w_save,F
w_save,w

102

restore Status

restore W without corrupting STATUS

**
test program that sets up the buffers and calls the ISR for processing.

Main
movlw
movwf
decfsz
goto

banksel
movlw

movwf

banksel
movlw

movwf

banksel
bcf

banksel
clrf

banksel
clrf

Initialize variables
clrf
clrf
clrf
clrf
clrf
clrf
clrf
clrf
clrf
clrf
clrf
clrf
clrf
clrf
clrf

clrf
clrf

.30
w save -w save,F
$-1

TRISE
Ox07

TRISE

TRISA
Oxff

TRISA

OPTION REG
OPTION_REG,NOT_REPU

PORTE
PORTE

PORTA
PORTA

offset
input
input+l
input+2
input+3
a h
a h+l
a h+2
a h+3
a 1
a l+l -
a 1+2 -
a 1+3
templ
temph

FIXEDO
FIXEDl

delay 16 us to wait for USE to reset
SIE before initializing registers
inner is merely a convienient register
to use for the delay counter.

7 - 0 Output
6 - 0 Output
5 - 0 Output
4 - 0 Output
3 - 0 Output
2 - l Input (Test Mode input)
1 - 1 Input (Right button)
0 - 1 Input (Left button)

7 - Unimplemented
6 - Unimplemented
5 - Unimplemented
4 - 1 Input, Channel 3 (Y-)
3 - 1 Input, Vref
2 - 1
1 - 1
0 - 1

Input, Channel 2 (Y+)
Input, Channel 1 (X-)
Input, Channel O (X+)

Turn on weak pull-ups on PORTE

www.manaraa.com

clrf

pagesel
call

pagesel
banksel
btfsc
goto

nop
ConfiguredUSB
nop

SKIPUSB
bcf
bcf

;configure A/D

banksel
clrf

banksel
movlw

movwf

banksel
movlw

movwf

;A/d configure end

pagesel
Goto

TESTMODE

InitUSB
InitUSB

SKIPUSB
TESTMODE
TESTMODE,O
SKIPUSB

STATUS,RPO
STATUS,RPl

ADRES
ADRES

ADCONO
Ox80

ADCONO

ADCONl
OxOl

ADCONl

start
start

Delay16 - Delay for 16us (roughly)

103

These six 1 nes of code show the appropriate
way to init alize the USE. First, initialize
the USB (wa t for host enumeration) then wait

If the lowest bit of TESTMODE is set,
goto SKIPUSB, to skip waiting for
ConfiguredUSB

until the enu..~eration process to complete.

Make sure you include all pagesels and return
to the desired bank (in this case Bank 0.)

7-6:ADCS<l:0> A/D Conversion Clock Select bits
10 = Fint/32 to maintain accuracy at 24MHz

5-3:CHS<2:0> Analog Channel Select bits
000 = channel 0, (RAO/ANO)

2:GO/DONE: A/D Conversion Status bit
0 = A/D conversion not in progress

l:Unimplemented
0:ADON: A/D On bit

0 = A/D converter module is shut off

7-3:Unimplemented
2-0: PFCG<2: O> A/D Port Configuration Control
bits

001 - AN5,AN4,AN2,AN1,ANO are analog
inputs, and AN3 is Vref.

This loop is used for the worst case Tacq of the ADC. [See section
12 .1, DS41124C-page 95, PIC16C745/765 Datasheet.]

INNER is calculated from a clock cycle of E66.6667ns (1/[6MHz/4])
and that 'decfsz' and 'goto' (while INNER> 0) take 3 instructions.
Thus 8*3 (=24) instructions are to be used. An extra instruction
cycle will be used on the last loop iteration (INNER= 0) because
'decfsz' and 'return' will both take 2 instructions.

Delay16
banksel
movlw
movwf

Delay16_InnerLoop
decfsz
goto
return

INNER
Ox08
INNER

INNER,F
Delay16_InnerLoop

8 -> INNER

Loop until INNER 0

www.manaraa.com

104

start
;***
; CursorDemo
; Generate USB mouse data and send it to the PC
;***
CursorDemo

banksel BUFFER
clrf BUFFER 0 -> BUFFER
clrf BUFFER+l 0 -> BUFFER+l
clrf BUFFER+2 0 -> BUFFER+2
clrf BUFFER+3 0 -> BUFFER+3

;Begin X+ Acquisition----------------------------
;a/d conversion - channel 0

banksel ADC ONO
movlw

movwf
bsf
call
bsf

AdwaitCHO
btfsc
goto
movlw
addlw
bcf
movwf
movf
btfsc
movf
movwf
bcf

;End X+ Acquisition

;Begin X- Acquisition
banksel
movlw

movwf
bsf
call
bsf

AdwaitCHl
btfsc
goto
movlw
addlw
bcf
movwf
movf
btfsc
movf

Ox80

ADCONO
ADCONO,ADON
Delayl6
ADCONO,GO_DONE

ADCONO,GO_DONE
AdwaitCHO
OxOO
input
STATUS,IRP
FSR
ADRES,W
TESTMODE,0
FIXEDO,W
INDF
ADCONO,ADON

ADCONO
Ox88

ADCONO
ADCONO, ADON
Delayl6
ADCONO,GO_DONE

ADCONO,GO_DONE
AdwaitCHl
OxOl
input
STATUS,IRP
FSR
ADRES,W
TESTMODE,O
FIXEDl,W

7-6:ADCS<l:O> A/D Conversion Clock Select bits
10 = Fint/32 to maintain accuracy at 24MHz

5-3:CHS<2:0> - Analog Channel Select bits
000 = channel O, (RAO/ANO)

2:GO/DONE: A/D Conversion Status bit
0 = A/D conversion not in progress

l:Unimplemented
0:ADON: A/D On bit

0 = A/D converter module is shut off

enable ADC
Delay 16us for Tacq
start conversion on channel 0

If GO DONE is not O,
goto AdwaitCHO
offset-> w
input+W(offset) -> W
Make sure we're in Bank 0/1
Set FSR at input+offset
ADC result-> W
If we're in Test Mode,
move fixed value into W
W -> index+offset
disable ADC

7-6:ADCS<l:O> A/D Conversion Clock Select bits
10 Fint/32 to maintain accuracy at 24MHz

5-3:CHS<2:0> - Analog Channel Select bits
001 = channel 1, (RAl/ANl)

2:GO/DONE: A/D Conversion Status bit
0 = A/D ccnversi~n not in progress

l:Unimplemented
0:ADON: A/D On bit

0 = A/D converter module is shut off

enable ADC
Delay 16us for Tacq
start conversion on channel 0

If GO DONE is not 0,
goto AdwaitCHl
offset-> W
input+W(offset) -> w
Make sure we're in Bank 0/1
Set FSR at input+offset
ADC result-> W
If we're in Test Mode,
move fixed value into W

www.manaraa.com

movwf
bcf

movlw
call

;End X- Acquisition

;Begin Y+ Acquisition
banksel
movlw

movwf
bsf
call
bsf

AdwaitCH2
btfsc
goto
movlw
addlw
bcf
movwf
movf
btfsc
movf
movwf
bcf

movlw
call

;End Y+ Acquisition

INDF
ADCON0,ADON

0x00
AVG

ADCON0
0x90

ADCON0
ADCON0,ADON
Delayl6
ADCON0,GO_DONE

ADCON0,GO_DONE
AdwaitCH2
0x02
input
STATUS,IRP
FSR
ADRES,W
TESTMODE,0
FIXED2,W
INDF
ADCON0,ADON

0x0l
AVG

105

W -> index+offset
disable ADC

offset-> W
Perform averaging on input+offset

7-6:ADCS<l:0> A/D Conversion Clock Select bits
10 = Fint/32 to maintain accuracy at 24MHz

5-3:CHS<2:0> - Analog Channel Select bits
010 = channel 2, (RP..2/AN2)

2:GO/DONE: A/D Conversion Status bit
0 = A/D conversion not in progress

l:Unimplemented
0:ADON: A/D On bit

0 = A/D converter module is shut off

enable ADC
Delay 16us for Tacq
start conversion on channel 0

If GO DONE is not 0,
goto AdwaitCH2
offset-> w
input+W(offset) -> W
Make sure we're in Bank 0/1
Set FSR at input+offset
ADC result-> W
If we're in Test Mode,
move fixed value into W
W -> index+offset
disable ADC

offset-> W
Perform averaging on input+offset

;Begin Y- Acquisition----------------------------
banksel ADCON0
movlw 0xA0

movwf ADCON0
bsf ADCON0,ADON
call Delayl6
bsf ADCON0,GO_DONE

AdwaitCH3
btfsc ADCON0,GO_DONE
goto AdwaitCH3
movlw 0x03
addlw input
bcf STATUS,IRP
movwf FSR
movf ADRES,W
btfsc TESTMODE,0
movf FIXED3,W
movwf INDF
bcf ADCON0, ADON

7-6:ADCS<l:0> AID Conversion Clock Select bits
10 = Fint/32 to maintain accuracy at 24MHz

S-3:CHS<2:0> - Analog Channel Select bits
100 = channel 4, (RA5/AN4)

2:GO/DONE: A/D Conversion Status bit
0 = A/D conversion not in progress

l:Unimplemented
0:ADON: A/D On bit

0 = A/D converter module is shut off

enable ADC
Delay 16us for Tacq
start conversion on channel 0

If GO DONE is not 0,
goto AdwaitC'H3
offset-> W
input+W(offset) -> W
Make sure we're in Bank 0/1
Set FSR at input+offset
ADC result-> w
If we're in Test Mode,
move fixed value into W
w -> index+offset
disable ADC

www.manaraa.com

movlw
call

Ox02
AVG

106

; offset-> w
; Perform averaging on input+offset

;End Y- Acquisition------------------------------

movlw
call

;Compute X magnitude
movlw
addlw
movwf
movf
movwf
bcf
rrf

movlw
addlw
movwf
movf
movwf
bcf
rrf
movf
subwf
movwf

movlw
addlw
movwf
movf
movwf
bcf
rrf

movlw
addlw
movwf
movf
movwf
bcf
rrf
movf
subwf
movwf

clrf

;mouse buttons
banksel
movf
andlw
xorlw
banksel
movwf

;end mouse buttons

;Send USB Packet
CursorDemol

clrf
movlw
movwf
banksel
bcf
movlw
movwf
movlw
pagesel
call

Ox03
AVG

values
OxOl
a h
FSR
INDF,W
templ
STATUS,C
templ

OxOO
a h
FSR
INDF,W
temph
STATUS,C
temph
templ,W
temph,W
BUFFER+l

Ox03
a h
FSR
INDF,W
templ
STATUS,C
templ

Ox02
a h
FSR
INDF,W
temph
STATUS,C
temph
templ,W
temph,W
BUFFER+2

BUFFER+3

PORTB
PORTB,W
Ox03
Ox03
BUFFER
BUFFER

INNER
2
OUTER
BUFFER
STATUS,IRP
BUFFER
FSR
4
PutEPl
PutEPl

offset-> W
Perform averaging on input+offset

offset-> W
a h+W -> W
Set FSR at a h+offset
a h+offset -> W
W -> templ
Clear carry bit
templ/2 -> templ

offset-> W
a h+W -> W
Set FSR at a h+offset
a h+offset -> W
w -> temph
Clear carry bit
temph/2 -> temph
templ -> W
temph-W -> W
W -> BUFFER+l

offset-> W
a h+W -> W
Set FSR at a h+offset
a h+offset -> W
W -> templ
Clear carry bit
templ/2 -> templ

offset-> W
a h+W -> W
Set FSR at a h+offset
a h+offset -> W
W -> temph
Clear carry bit
temph/2 -> temph
templ -> W
temph-W -> W
W -> BUFFER+2

Clear BUFFER+3 (USB ReportID)

PORTB states-> w
Mask off lower 2 bits
Invert their states

W -> BUFFER (USB button byte)

INNER and OUTER are delay registers

2 -> OUTER

Make sure we're in Bank 0/1
Send four bytes to the PC starting
with BUFFER

Number of bytes to send

Send the bytes

www.manaraa.com

pagesel
goto

CursorDemo
CursorDemo

107

; Start all over again

AVG - Averages the current input against a running 16-bit average (a h:a 1).

AVG

Assumes Wis the offset (0-3) for the input and average registers.

Uses temph and templ.

Modifies a h:a 1 as a return value. a h:a l is 15/lG of the previous a h:a l
value plus 1/16 of the new input value from the ADC channel.

movwf

movlw
movwf

; Move
movf
addlw
bcf
movwf
movf
movwf
clrf

offset ; Save offset from W

0x04
OUTER

a h+offset -> temph; a h+offset
offset,W
a h
STATUS,IRP
FSR
INDF,W
temph
INDF

4 -> OUTER, used for a loop

0

; Move a l+offset -> templ; a l+offset 0
movf
addlw
bcf
movwf
movf
movwf
clrf

offset,W
a 1
STATUS,~RP
FSR
INDF,W
ternpl
INDF

AVG BEGIN

; Call RRT with 1 loop to divide by 2
movlw 0x0l
call RRT

call

decfsz
goto

; temph
clrf

; Move
movf
addlw
bcf
movwf
movf
movwf

ADDATOT

OUTER
AVG BEGIN

0
ternph

input+offset -> templ
offset,W
input
STATUS,IRP
FSR
INDF,W
templ

Add temph:templ to a h:a 1

Loop until OUTER 0

; Call RLT with 4 loops to multiply by 16
movlw 0xC4
call RLT

call ADDATOT Add ternph:templ to a h:a l

ret·u.rn

RLT - Rotate Left Temp. Rotates the 16-bit temp value stored in temph:templ.
Assumes Wis the number of rota~e2 that should be performed.

Uses temph and templ.

www.manaraa.com

108

Modifies temph:templ to be rotated left by w times.
RLT

movwf
RLT_loop

bcf
rlf
bcf
rlf
btfsc
bsf
decfsz
goto
return

INNER

STATUS,C
temph
STATUS,C
templ
STATUS,C
temph,0
INNER
RLT_loop

W -> INNER

Clear carry bit
Rotate temph left
Clear carry bit
Rotate templ left
If there was a carry up from templ,
set the lowest bit of temph

Loop until INNER= 0

RRT - Rotate Right Temp. Rotates the 16-bit temp value stored in temph:templ.
Assumes Wis the number of rotates that should be performed.

Uses temph and templ.

Modifies temph:templ to be rotated right by W times.

RRT
movwf INNER

RRT_loop
bcf STATUS,C
rrf templ
bcf STATUS,C
rrf temph
btfsc STATUS,C
bsf templ,7
decfsz INNER
goto RRT_loop
return

ADDATOT - Adds a h:a l to temph:templ
Uses ah and a 1.

Modifies a h:a 1 to be a h:a_l+temph:templ
ADDATOT

movf offset,W
addlw a 1
movwf FSR
movf INDF.W
addwf templ,W
movwf INDF
clrf temp
btfsc STATIJS,C
bsf temp,0

movf offset,W
addlw a h -
movwf FSR
btfsc temp,0
incf INDF
movf INDF,W
addwf temph,W
movwf INDF

return

W -> INNER

Clear carry bit
Rot~te templ right
Clear carry bit
Rotate temph right
If there was a carry down from temph,
set the highest bit of templ

Loop until INNER= 0

offset-> W
a l+W(offset) -> W
Set FSR at a l+offset
a l+offset -> W
ternpl +W -:, W
w -> a l+o::fset
0 -> temp
If there was a carry from the add,
set the lowest bit in temp

offset-> W
a_h+W(offset) -> W
Set FSR at a h+offset
If the lowest bit in temp is set,

increment a h+W to account for the carry up
a h+offset -> W
temph+W -> W
W -> a h+offset

end END OF CODE

www.manaraa.com

109

APPENDIX E· MICROCONTROLLER FIRMWARE
Usb ch9.asm

Software License Agreement

The software supplied herewith by Microchip Technology Incorporated (the "Company")
for its PICmicro(r) Microcontroller is intended and supplied to you, the Company's
customer, for use solely and exclusively on Microchip PICmicro Microcontroller
products.

The software is owned by the Company and/or its supplier, and is protected under
applicable copyright laws. All rights are reserved. Any use in violation of the
foregoing restrictions may subject the user to criminal sanctions under applicable
laws, as well as to civil liability for the breach of the terms and conditions of
this license.

THIS SOFTWARE IS PROVIDED IN AN "AS IS" CONDITIJN. NO WARRANTIES, WHETHER EXPRESS,
IMPLIED OR STATUTORY, INCLUDING, BUT NOT LIMITED TO, IMPLIED WARRANTIES OF
MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE APPLY TO THIS SOFTWARE. THE
COMPANY SHALL NOT, IN ANY CIRCUMSTANCES, BE LIABLE FOR SPECIAL, INCIDENTAL OR
CONSEQUENTIAL DAMAGES, FOR ANY REASON WHATSOEVER.

filename: USB CH9.ASM

Implements the chapter 9 enumeration commands for Microchip's
PIC16C7x5 parts.

##•######################

Author(s):
Company:

Dan Butler and Reston Condit
Microchip Technology Inc

Revision: 1.24
Date: 5 March 2002
Assembled using MPASM 2.61

;##4#######################

include files:
Pl6C765.inc
usb defs.inc

Rev 1. 00
Rev 1.00

;##¥#####################

#include <pl6C765.inc>
#include "usb defs.inc"

errorlevel -302 ; supress "register not in check page bits" message

;#define SHOW ENUM STATUS

unbanked
temp
GPtemp

udata shr
res 1
res 1

these will get assigned to unbanked RAM (0x70-0z7F)
short term temp register used in Get Interface
temporary storage location used in Get and PutEPn

global
global
global
global
global
global
global

BufferDescriptor
BufferData

bank2

temp
temp2
EP0_maxLength
EP0 start
EP0 end

udata
BufferDescriptor
BufferData

res 3
8

www.manaraa.com

USBMaskedinterrupts res
USB_Curr_Config res
USB_status_device res
USB_dev_req res
USB address_pending res
USBMaskedErrors res
PIDs
EP0 start
EP0 end
EP0_maxLength
temp2
bufindex
USB Interface
inner
outer
dest_ptr
source_ptr
hid dest_ptr
hid source_ptr
counter
bytecounter
RP save
IS IDLE
USB UST.1'.T

res
res
res
res
res
res
res
res
res

res
res
res
res
res
res
res
res

1
1
l
1
1
1
l
2

l
1
l
3
1
1
1
1
1
1
l
1
1
1
1

global
global
global
global

USB_Curr_Config
USB status device

#if def
USB PID ERR

- -
USB_dev_req
USB Interface

COUNTERRORS
res

USB CRC5 ERR res
2
2
2
2
2
2
2

USB CRC16 ERR res
USB DFNS ERR res
USB BTO ERR res
USB WRT ERR res
USB OWN ERR res
USB BTS ERR res
#endif

extern Config_desc index
extern Descriptions
extern string index
extern String0
extern String0_end
extern ClassSpecificRequest
extern Check - Class _Specific
extern Get Report Descriptor
extern Get HID Descriptor
extern DeviceDescriptor
extern StringDescriptions

110

status of device

pointer to first byte of data to send
poi~ter to last byte of data to send

allow 3 interfaces to have alternate endpoints

used in buffer copies for Get and
Put USB calls
used in buffer copies fer HIDSetReport

saved copy that will be returned in W
save bank bits while copying buffers

copy of the USTAT register before clearing TOK DNE

16 bit counters for each error condition

IN

****************************~"***
This section contains the functions to interface with the main
application.
************************************7*********************************

interface code

GETEPl and GETEP2

Note: These functions are, in reality, macros defined in usb defs.inc.
To save ROM, delete the instances below that you will not need.

Enter with buffer pointer in IRP+FSR.
Checks the semaphore for the OUT endpoint, and copies the buffer
if available. Restores the bank bits as we found them.

www.manaraa.com

111

Returns the bytecount in the W register and return status in the carry
bit as follows:
0 - no buffer available,
1 - Buffer copied and buffer made available for next transfer.

The number of bytes moved is returned in W reg.
************************+**************~******************************

GETEPl
GETEP2

create instance of GETEPl
create instance of GETEP2

**
PUTEPl and PUTEP2

Note: These functions are, in reality, macros defined in usb defs.inc.
To save ROM, delete the instances below that you will not need.

Enter with bytecount in Wand buffer pointer in IRP+FSR.
the bytecount is encoded in the lower nybble of W.

Tests the owns bit for the IN side of the specified Endpoint.
If we own the buffer, the buffer pointed to by the FSR is copied
to the EPn In buffer, then the owns bit is set so the data will be
TX'd next time polled.

Returns the status in the carry bit as follows:
1 - buffer available and copied.
0 - buffer not available (try again later)
**

PUTEPl
PUTEP2

create instance of PUTEPl
create instance of PUTEP2

Stall Endpoint.
Sets the stall bit in the Endpoint Control Register. For the control
Endpoint, this implements a Protocol stall and is used when the request
is invalid for the current device state. For non-control Endpoints,
this is a Functional Stall, meaning that the device needs outside
intervention and trying again later won't help until it's been serviced.
enter with endpoint# to stall in Wreg.

StallUSBEP
bsf
andlw
addlw
movwf
bsf
return

STATUS,IRF
0x03
low UEP0
FSR
INDF,EP STALL

select banks 2/3
try to keep things under control
add address of endpoint control reg

set stall bit

Unstall Endpoint.
Sets the stall bit in the Endpoint Control Register. For the control
Endpoint, this implements a Protocol stall and is used when the request
is invalid for the current device state. For non-control Endpoints,
this is a Functional Stall, meaning that the device needs outside
intervention and trying again later won't help until it's been serviced.
enter with endpoint# to stall in Wreg.

UnstallUSBEP
bsf
andlw
addlw
movwf
bcf
return

STATUS,IRP
0x03
low UEP0
FSR
INDF,EP STALL

select banks 2/J
try to keep things under control
add address of endpoint control reg

clear stall bit

www.manaraa.com

112

CheckSleep
Checks the USB Sleep bit. If the bit is set, the
Endpoint, this implements a Protocol stall and is used when the request
is invalid for the current device state. For non-control Endpoints,
this is a Functional Stall, meaning that the device needs outside
intervention and trying again later won't help until it's been serviced.
enter with endpoint# to stall in Wreg.
~****************

CheckSleep
global CheckSleep

banksel IS IDLE
btfss IS_IDLE,0
return

#ifdef SHOW_ENUM STATUS
banksel PORTB
bsf PORTB,4
banksel UIR

#endif
bsf STATUS,RP0
bcf UIR,ACTIVITY
bsf UIE,ACTIVITY
bsf UCTRL,SUSPND
sleep
nop
bcf UCTRL,SUSPND
bcf UIR,UIDLE
bsf UIE,UIDLE
bcf UIR,ACTIVITY
bcf UIE,ACTIVITY

#ifdef SHOW ENUM STATUS -
banksel PORTB
bcf PORTB,4

#endif

test the bus idle bit

turn on LED 4 to indicate we've gone to sleep

point to bank 3

enable the USB activity interrupt
put USB regulator and transciever in low power state
and go to sleep

turn off LED 4 to indicate we're back.

Remote Wakeup
Checks USB_status_device to see if the host enabled Remote Wakeup
If so, perform Remote wakeup and disable remote wakeup feature
It is called by PortBChange.

RemoteWakeup
global RemoteWakeup

banksel USB status device BANK 2
btfss USB_status_device, 1
return

bsf STATUS, RPO BANK 3
bcf

bsf
bcf
bcf
bcf
bsf

UCTRL, SUSPND
UIE,UIDLE
UIR,UIDLE
UIE,ACTIVITY
UIR,ACTIVITY
UCTRL, 2 RESUME SIGNALING

bcf STATUS, RPO

clrf
movlw

inner
0x80

movwf outer
pagesel RemoteLoop

Remote Loop
decfsz
goto
decfsz
goto

inner, f
Remote Loop
outer, f
Remote Loop

bsf STATUS, RPO BANK 3

BANK 2

www.manaraa.com

bcf UCTRL, 2
return

113

Clear Resume bit

**********************~**
USB Soft Detach
Clears the DEV_ATT bit, electrically disconnecting the device to the bus.
This removes the device from the bus, then reconnects so it can be
re-enumerated by the host. This is envisioned as a last ditch effort
by the software.

SoftDetachUSB
global SoftDetachUSB

banksel UCTRL
bcf UCTRL,DEV_ATT

bcf

clrf
clrf

STATUS, RPO

outer
inner

pagesel SoftDetachLoop
SoftDetachLoop

incfsz
goto
incfsz
goto

inner,£
SoftDetachLoop
outer,£
SoftDetachLoop

pagesel InitUSB
call lnitUSB
return

clear attach bit

bank 2

reinitialize the USB peripheral

***********************•**
Init USB
Initializes the USB peripheral, sets up the interrupts
**

InitUSB
global InitUSB

banksel USWSTAT
clrf USWSTAT
movlw OxOl
movwf UIE
clrf UIR
movlw OxOB
movwf UCTRL

bcf STATUS, RPO
clrf USB Curr Config
movlw 1
movwf USB status device
clrf USB Interface -clrf USB Interface+l
clrf USB Interface+2
movlw OxFF
movwf USB dev req

#ifdef COUNTERRORS
clrf USB PID ERR
clrf USB PID ERR+l
clrf USB CRC5 ERR
clrf USB CRCS ERR+l
clrf USB CRC16 ERR - -
clrf USB CRC 16 ERR+ 1 - -
clrf USB DFN8 ERR
clrf USB DFNB ERR+l
clrf USB BTO ERR
clrf USB BTO ERR+l
clrf USB WRT ERR

default to powered state
mask all USB interrupts except reset

clear all USB Interrupt flags
Device attached

bank 2

no device requests in process

www.manaraa.com

clrf
clrf
clrf
clrf
clrf

#endif

banksel
bcf
bsf
bsf
bsf
bsf

#ifdef SHOW
bcf
bsf

#endif
return

USB WRT ERR+l
USB OWN ERR
USB OWN ERR+l
USB BTS ERR
USB BTS ERR+l

PIRl
PIRl,USBIF
STATUS,RP0
PIEl,USBIE
INTCON, 6
INTCON, 7
ENUM STATUS
STATUS,RP0
PORTB,0

114

bank 0
clear the USB flag
bank l
enable usb interrupt
enable global and peripheral interrupts

select bank 0
set bit zero to indicate Powered status

**
Deinit USB
Shuts down the USB peripheral, clears the interrupt enable.
***~**

DeinitUSB
global DeinitUSB

banksel UCTRL
bcf UCTRL,DEV ATT D+/D- go high Z
bsf UCTRL,SUSPND Place USB module in low power mode.

clrf USWSTAT set device state to powered.

select bank l bcf
bcf

STATUS,RPl
PIEl,USBIE clear USB interrupt enable

#ifdef SHOW ENUM STATUS
bcf STATUS,RP0
movlw 0x0l
movwf
bsf

#endif

PORTB
STATUS,RP0

clear all lights except powered

return

core code
The functions belo~ are the core functions

USB interrupt triggered, Why?
Poll the USB interrupt flags to find the cause.
w*******************

ServiceUSBint
global ServiceUSBint

banksel UIR
movf
andwf
bcf

UIR,w
UIE,w
STATUS, RPO

get the USB interrupt register
mask off the disabled ~nterrupts
BANK 2

pages el Exi tServiceUSBint
btfsc STATUS,Z is there any unmasked interrupts?
goto ExitServiceUSBint; no, bail out.

movwf USBMaskedinterrupts
pagesel TokenDone
btfsc USBMaskedinterrupts,TOK_DNE
call TokenDone
pagesel USBReset
btfsc USBMaskedinterrupts,USB RST
call USBReset

was it a token done?

www.manaraa.com

115

pagesel USBStall
btfsc USBMaskedinterrupts,STALL
call USBStall
pagesel USBError
btfsc USBMaskedinterrupts,UERR

USBError call
pagesel
btfsc
call
pagesel
btfsc
call

USBSleep
USBMaskedinterrupts,UIDLE
USBSleep
USBActivity
USBMaskedinterrupts,ACTIVITY
USBActivi1:y

pagesel ServiceUSBint
goto ServiceUSBint

ExitServiceUSBint
banksel PIRl
bcf PIRl,USBIF
return

USB Reset interrupt triggered (SEO)
initialize the Buffer Descriptor Table,
Transition to the DEFAULT state,
Set address to O
enable the USB
***********************************+******************************

USBReset

clrf
clrf
bsf

bcf
bcf
bcf
bcf

movlw
movwf
movlw
movwf
movlw
movwf

movlw
movwf
movlw
movwf

clrf

; START IN BANK2

USB_Curr_Config
IS IDLE
STATUS, RPO

UIR,TOK DNE
UIR,TOK_DNE
UIR,TOK_DNE
UIR,TOK DNE

Ox8
BDOOBC
USB Buffer
BDOOAL
Ox88
BDOOST

USB Buffer+8
BDOIAL
OxOB
BDOIST

UADDR
clrf UIR
banksel PIRl
bcf PIRl,USBIF

bank 3

hit this 4 times to clear out the
USTAT FIFO

Endpoint O OUT gets a buffer
set up buffer address
set owns bit (SIE can write)

Endpoint O IN gets a buffer
set up buffer address
Clear owns bit (PIC can write)

set USB Address to 0
clear all the USB interrupt flags
switch to bank 0

Set up the Endpoint Control Registers. The following patterns are defined
ENDPT DISABLED - endpoint not used
ENDPT IN ONLY - endpoint supports IN transactions only
ENDPT OUT ONLY - endpoint supports OUT transactions only
ENDPT CONTROL - Supports IN, OUT and CONTROL transactions - Only use with EPO
ENDPT NON CONTROL - Supports both IN and OUT transactions

banksel
movlw
movwf

movlw
movwf

movlw

UEPO
ENDPT
UEPO

Ox3B
UIE

OxFF

CONTROL
endpoint O is a control pipe and requires an ACK

enable all interrupts except activity

enable all error interrupts

www.manaraa.com

movwf

movlw
movwf

UEIE

DEFAULT STATE
USWSTAT

116

bcf
movlw
movwf
bcf

STATUS,RPO select bank 2
OxOl
USB status device ; Self powered, remote wakeup disabled
STATUS,RPl bank 0
ENUM STATUS #ifdef SHOW

bsf
#endif

PORTB,l set bit one to indicate Reset status

bsf STATUS,RPl
return ; to keep straight with host controller tests

Enable Wakeup on interupt and Activity interrupt then put the
device to sleep to save power. Activity on the D+/D- lines will
set the ACTIVITY interrupt, waking up the cart.
*******************+***************************+******************

USBSleep
bsf
bcf
bcf
bcf

; starts from
STATUS, RPO
UIE, TJIDLE
UIR,UIDLE
UIR,ACTIVITY

bank2
; up to bank 3

bsf UIE,ACTIVITY
bsf

banksel PIRl
UCTRL, SUSPND

bcf PIRl,USBIF

bsf
bsf

return

STATUS, RPl
IS IDLE, 0

switch to bank 0

switch to bank 2

This is activated by the STALL bit in the UIR register. It really
just tells us that the SIE sent a STALL handshake. So far, Don't
see that any action is required. Clear the bit and move on.
**

; starts in bank 2 USBStall
bsf
bcf

STATUS, RPO bank 3
UIR, STALL clear STALL

banksel PIRl
bcf PIRl,USBIF
bsf
return

STATUS, RPJ

switch to bank 0

bank 2

The SIE detected an error. This code increments the appropriate
error counter and clears the flag.
~*********************

USBError
bsf
bcf

; starts in
STATUS, RPO
UIR,UERR

banksel PIRl
bcf PIRl,USBIF
bsf STATUS,RPl

#ifdef COUNTERRORS
banksel UEIR

UEIR,w
UEIE,w
UEIR

bank 2

movf
andwf
clrf
bcf
movwf

STATUS, RPO
USBMaskedErrors

bank 3

switch to bank 0
clear the USE interrupt flag.
switch to bank 2

get the error register
mask with the enables

Bank 2
save the masked errors

www.manaraa.com

btfss USBMaskedErrors,PID_ERR
goto CRC5Error
INCREMENT16 USB PID ERR

CRC5Error
btfss USBMaskedErrors,CRC5
goto CRC16Error
INCREMENT16 USB CRC5 ERR

CRC16Error
btfss USBMaskedErrors,CRC16
goto DFNBError
INCREMENT16 USB CRC16 ERR

DFNSError
btfss USBMaskedErrors,DFNS
goto BTOError
INCREMENT16 USB DFN8 ERR

BTOError
btfss USBMaskedErrors,BTO_ERR
goto WRTError
INCREMENT16 USB BTO ERR

WRTError
btfss USBMaskedErrors,WRT_ERR
goto OWNError
INCREMENT16 USB WRT ERR

OWNError
btfss USBMaskedErrors,OWN ERR
goto BTSError
INCREMENT16 USB OWN ERR

BTSError
btfss USBMaskedErrors,BTS ERR
goto EndError
INCREMENT16 USB BTS ERR

EndError
#endif

banksel USBMaskedlnterrupts
return

117

Service the Activity Interrupt. This is only enabled when the
device is put to sleep as a result of inactivity on the bus. This
code wakes up the part, disables the activity interrupt and reenables
the idle interrupt.
*******************************+**********************************

USBActivity
bsf

; starts in bank 2
STATUS, RPO Bank 3

bcf
bcf

UIE,ACTIVITY
UIR,ACTIVITY

bcf UIR,UIDLE
bsf UIE,UIDLE

; clear the Activity and Idle bits

bcf UCTRL, SUSPND

banksel PIRl
bcf PIRl,USBIF
bsf STATUS,RPl

clrf IS IDLE

return

switch to bank 0
clear the USB interrupt flag.
switch to bank 2

**
Process token done interrupt ... Most of the work gets done through
this interrupt. Toxen Done is signaled in response to an In, Out,
or Setup transaction.
*************~***~**

TokenDone ; starts in bank 2
COPYBUFFERDESCRIPTOR copy BD from dual port to unbanked RAM
banksel USTAT
movf
bcf

USTAT,w
UIR,TOE_DNE

copy USTAT register before ...
clearing the token done interrupt.

www.manaraa.com

banksel PIRl
bcf PIRl,USBIF
bsf STATUS,RPl

movwf USB USTAT

#ifdef SHOW ENUM STATUS

118

switch to bank 0
clear the USB interrupt flag.
switch to bank 2

Save USTAT in bank 2

This toggles the activity bits on portB (EP0 -> Bit 5; EPl -> bit 6; EP2 -> bit 7)
bcf STATUS,RPl ; bank 0
andlw 0x18 ; save endpoint bits

pagesel tryEPlactivity
btfss STATUS,Z ; is it EP0?
goto tryEPlactivity
movlw Ox20

pagesel maskport
goto maskport

is it bit one?
tryEPlactivity

xorlw Ox OB
btfss STATUS,Z
movlw 0x80
btfsc STATUS,Z
movlw 0x40

No, It's not EP0, nor 1 so it must be EP2.

Yes, toggle bit 6 to Show EPl activity
maskport

xorwf
bsf

#endif

PORTB,f
STATUS,RPl banl: 2

check UOWN bit here if desired
movf
andlw
movwf

BufferDescriptor, w ; get the first byte of th.e BD
0x3c ; save the PIDs
PIDs

xorlw TOKEN IN
pagesel Tokenir.PID

btfsc STATUS,Z
goto TokeninPID

movf PIDs,w
xorlw TOKEN OUT

pagesel TokenOutPID
btfsc STATUS,Z
goto TokenOutPID

movf PIDs,w
xorlw TOKEN SETUP

pagesel TokenSetupPID
btfsc STATUS,Z
goto TokenSetupPID

return ; should never get here ...

**
Process out tokens
For EP0, just turn the buffer around. There should be no EP0
tokens to deal with.
EPl and EP2 have live data destined for the application
**

TokenOutPID ; STARTS IN BANK2
movf USB_USTAT,w get

pagesel tryEPl
btfss STATUS,Z was
goto tryEPl no,

movf USB_dev req,w
xorlw HID SET REPORT

pageselResetEPDOutBuffer
btfss STATUS,Z
goto ResetEP0OutBuffer

the status register

it EP0?
try EPl

toggle bit 7

www.manaraa.com

119

HIDSetReport

**
You must write your own SET_REPORT routine. The following
commented out code is provided if you desire to make a SET REPORT
look like a EPl OUT Interrupt transfer. Uncomment it and use it
if you desire this functionality.
*************************************~********~*******************

movlw OxFF
movwf USB_dev_req
banksel BDlIST
movf BDOOST,w
movwf BDlOST
movf BDOOAL,w
bcf STATUS,RPO
movwf hid_source_ptr
bsf STATUS,RPO
movf BDlOAL,w
bcf STATUS,RPO
movwf hid_dest_ptr
bsf STATUS,RPO
movf BDOOBC,w
movwf BDlOBC
bcf STATUS,RPO
movwf counter

; clear the request type

Copy status register to EPl Out
get EPO Out buffer address
bank 2

bank 3
get EPl Out Buffer Address
bank 2

bank 3
Get byte count
copy to EPl Byte count
bank 2

bankisel BDlIST indirectly to bank 3
;HIDSRCopyLoop

movf hid source_ptr,w
movwf FSR
movf
movwf
movf
movwf
movf
movwf
incf
incf
decfsz
goto

bsf
movlw
movwf

INDF,w
temp
hid dest _ptr,w
FSR
temp,w
INDF
hid source ptr,f
hid dest ptr,f -
counter,f
HIDSRCopyLoop

STATUS,RPO
OxOB
BDOOST

ResetEPOOutBuffer
bsf STATUS,RPO

movlw
movwf
movlw

OxOB
BDOOBC
OxBB

bank 3

REset EPO Status back to SIE

no, just reset buffer and move on.

it's EPO .. buffer already copied,
just reset the buffer

movwf BDOOST set OWN and DTS Bit
pagesel Send_OLen_pkt

bcf STATUS,RPO bank 2
goto Send OLen_pkt
return

tryEPl ; bank 3
xorlw Ox OS

pagesel tryEP2
btfss STATUS,Z
goto tryEP2

was it EPl?

**** Add Callout here to service EPl in transactions. ****

return

tryEP2
movf
xorlw

bank 3
USB_USTAT,w
OxlO was it EP2?

www.manaraa.com

120

btfsc STATUS,Z
return ; unrecognized EP (Should never take this exit)

**** Add Callout here to service EP2 in transactions. ****
return

**
Process in tokens
**

TokeninPID ; starts in bank2
; Assumes EP0 vars are setup in a previous call to setup.
EP0 in

movf USB_USTAT,w get the status register
andlw 0x18

pagesel tryEPlin
btfss STATUS,Z
goto tryEPlin

save only EP bits (we already know it's an IN)

was it EP0?
no, try EPl

movf USB_dev_req,w
xorlw GET DESCRIPTOR

pagesel check_GSD
btfss STATUS,Z
goto check GSD
pagesel copy_descriptor_to EP0
call copy_descriptor_to_EP0
goto exitEP0in

Check for Get String Descriptor
check GSD

movf USB_dev_req,w
xorlw GET STRING DESCRIPTOR

pagesel check_SA
btfss STATUS,Z
goto check SA

pagesel copy descriptor to EP0
call copy_descriptor_to_EPO

pagesel exitEP0in
goto exitEP0in

Check for Set Address
check SA

movf USB_dev_req,w
xorlw SET ADDRESS

pagesel check SF
btfss STATUS,Z
goto check SF

pagesel finish set_address
call finish set address

pagesel exitEP0in
goto exitEP0in

check SF
movf USB_dev_req,w
xorlw SET FEATURE

pagesel check_CF
btfss STATUS,Z
goto check CF

pagesel exitEP0in
goto exitEP0in

check CF
movf USB_dev_req,w
xorlw CLEAR FEATURE

pagesel Class_Specific
btfss STATUS,Z
goto Class_Specific

movf BufferData+4, w
xorlw 1
pagesel clear EP2

clear endpoint 1 stall bit

www.manaraa.com

btfss
goto
bsf
bsf

bcf

STATUS,Z
clear EP2

STATUS, RPO
UEPl, EP STALL

STATUS, RPO
pagesel exitEPOin

goto exitEPOin
clear EP2

121

bank 3

bank 2

movf BufferData+windex, w clear endpoint~ stall bit

bcf

xorlw 2
pagesel exitEPOin
btfss STATUS, Z
goto
bsf
bsf

exitEPOin
STATUS, RPO
UEP2, EP STALL

STATUS, RPO
pagesel exitEPOin

goto exitEPOin

Class_Specific
pagesel Check Class_Specific_IN
goto Check Class Specific IN

exitEPOin
return

bank 3

ban}: 2

**
though not required, it might be nice to have a callback function here
that would take some action like setting up the next buffer when the
previous one is complete. Not necessary becai;se the same functionality
can be provided through the PutUSB call.
**

tryEPlin ; starts in bank 2
xorlw Ox08 was it EPl?

pagesel tryEPlin
btfss STATUS,Z
goto tryEP2in

**** Add Callout here to service EPl in transactions.
return

tryEP2in ; starts in bank 2
**** Add Callout here to service EP2 in transactions.

return

~*****
Return a zero length packet on EPO In
**

Send_OLen_pkt
global Send OLen pkt

banksel
clrf
movlw
movwf
bcf
clrf
return

BDOIBC
BDOIBC
Oxc8
BDOIST
STATUS,RPO
USB dev_req

set byte count to 0

set owns bit
back to bank 2

process setup tokens
**

TokenSetupPID starts in bank 2
bsf STATUS,IRP ; indirectly to pages 2/3
movf BufferDescriptor+ADDRESS,w; get the status register
movwf FSR save in the FSR.
movf
movwf
incf
movf

INDF,w
BufferData
FSR,f
INDF,w

in shared RAM

www.manaraa.com

122

movwf BufferData+l
incf FSR,f
movf INDF,w
movwf BufferData+2
incf FSR, f
movf INDF,w
movwf BufferData+3
incf FSR, f
movf INDF,w
movwf BufferData+4
incf FSR, f
movf INDF,w
movwf BufferData+S
incf FSR,f
movf INDF,w
movwf BufferData+6
incf FSR, f
movf INDF,w
movwf BufferData+7
bsf STATUS, RPO ; bank 3
movlw Ox08
movwf BDOOBC reset the byte count too.
movwf BDOIST return the in buffer to us (dequeue any pending requests)

bcf STATUS, RPO ; bank 2
movf BufferData+bmRequestType, w
xorlw HID SET REPORT ; set EPO OUT UOWNs back to SIE

movlw 0x88 ; set DATA0/DATAl packet according to request type
btfsc STATUS, Z
movlw Oxes
bsf STATUS, RPO bank 3

movwf

bcf

BDOOST

UCTRL,PKT DIS Assuming there is nothing to dequeue, clear the packet disable
bit

bcf
clrf

STATUS,RP0
USB dev req

ballk 2
clear the device request ..

movf BufferData+bmRequestType,w
pagesel HostToDevice

·btfsc STATUS, Z
goto

movf
xorlw

HostToDevice

BufferData+bmRequestType,w
0x0l ; test for host to Interface tokens

pagesel HostTointerface
btfsc STATUS,Z
goto

movf
xorlw

HostTointerface

BufferData+bmRequestType,w
0x02 ; test for host to Endpoint tokens

pagesel HostToEndpoint
btfsc STATUS,Z
goto HostToEndpoint

movf BufferData+bmRequestType,w
xorlw 0x80 ; test for device to Host tokens

pagesel DeviceToHost
btfsc STATUS,Z
goto DeviceToHost

movf BufferData+bmRequestType,w
xorlw Ox81 ; test for device to Interface tokens

pagesel InterfaceToHost
btfsc STATUS,Z
goto

movf
xorlw

InterfaceToHost

BufferData+bmRequestType,w
0x82 ; test for device to Endpoint tokens

www.manaraa.com

pagesel EndpointToHost
btfsc STATUS,Z
goto EndpointToHost

123

movf BufferData+bmRequestType,w
andlw 0x60 ; mask off type bits
xorlw 0x20 ; test for class specific
pagesel ClassSpecificRequest
btfsc STATUS,Z ; was it a standard request?
goto ClassSpecificRequest ; nope, see if it was a class specific request

CheckForVendorRequest
movf BufferData+bmRequestType,w
andlw 0x60 mask off type bits
xorlw 0x40 test for vendor specific
pagesel wrongstate
btfss STATUS,Z was it a standard request?
goto
pagesel
goto
return

wrongstate
CheckVendor
CheckVendor nope, see if it was a vendor specific

now test bRequest to see what the request was.

CheckForStandardRequest
; bmRequestType told us it was a Host to Device transfer. Now look at
; the specifics to see what's up
HostToDevice ; starts in bank 2

movf BufferData+bRequest,w what was our request
xorlw CLEAR FEATURE

pagesel Clear_Device Feature
btfsc STATUS,Z
goto Clear Device Feature

movf BufferData+bRequest,w
xorlw SET ADDRESS

pagesel Set_Address
btfsc STATUS,Z
goto

movf
xorlw

Set Address

BufferData+bRequest,w
SET CONFIGURATION

pagesel Set_Configuration
btfsc STATUS,Z
goto

movf
xorlw

Set_Configuration

BufferData+bRequest,w
SET FEATURE

pagesel Set_Device Feature
btfsc STATUS,Z
goto Set Device Feature

pagesel wrongstate
goto wrong state

HostTointerface; starts in bank 2

was our request Set Address

was our request Set Configuration

was our request Set Feature

movf BufferData+bRequest,w ; what was our request
xorlw CLEAR FEATURE

pagesel Clear_Interface_Feature
btfsc STATUS,Z
goto Clear Interface Feature

movf BufferData+bRequest,w
xorlw SET INTERFACE

pagesel Set_Interface
btfsc STATUS,Z
goto Set Interface

movf BufferData+bRequest,w

was our request Set Interface

was our request Set Feature

www.manaraa.com

xorlw SET FEATURE
pagesel Set_Interface Feature

btfsc STATUS,Z
goto Set Interface Feature

pagesel wrongstate
goto wrongstate

HostToEndpoint ; starts in bank2

124

movf BufferData+bRequest,w ; what was our request
xorlw CLEAR FEATURE

pagesel Clear Endpoint Feature
btfsc ST.l\TUS, Z
goto Clear Endpoint Feature

movf BufferData+bRequest,w
xorlw SET FEATURE

pagesel Set_Endpoint Feature
btfsc STATUS,Z
goto Set_Endpoint_Feature

DeviceToHost ; starts in bank2
movf BufferData+bRequest,w
xorlw GET CONFIGURATION

pagesel Get_Configuration
btfsc STATUS,Z
goto Get Configuration

movf BufferData+bRequest,w
xorlw GET DESCRIPTOR

pagesel Get_Descriptor
btfsc STATUS,Z
goto Get Descriptor

movf BufferData+bRequest,w
xorlw GET STATUS

pagesel Get_Device Status
btfsc STATUS,Z
goto Get Device Status

InterfaceToHost; starts in bank2
movf BufferData+bRequest,w
xorlw GET INTERFACE

pagesel Get_Interface
btfsc STATUS,Z
goto Get Interface

movf BufferData+bRequest,w
xorlw GET STATUS

pagesel Get_Interface Status
btfsc STATUS,Z
goto Get Interface Status

movf BufferData+bRequest,w
xorlw GET DESCRIPTOR

pagesel Get_Descriptor
btfsc STATUS,Z
goto Get Descriptor

EndpointToHost ; stares in bank2
movf BufferData~bRequest,w
xorlw GET STATUS

pagesel Get_Endpoint_Status
btfsc STATUS,Z
goto Get Endpoint Status

pagesel wrongstate
goto wrong state

was our request Set Feature

what was our request

was our request Get Decriptor?

was our request Get Status?

was our request Get Interface?

was our request Get Status?

was our request Get Decriptor?

was our request Get Status?

unrecognised token, stall EP0

www.manaraa.com

125

return

Get Descriptor
Handles the three different Get Descriptor commands
**

Get Descriptor starts in bank2
movf BufferData+(wValue+l),w request, which seems to be undefined,

but it won't enumerate without it xorlw 0x22
pages el Get_ Report Descriptor

btfsc STATUS,Z
goto Get_Report Descriptor

movf BufferData+(wValue+l),w
xorlw 0x21

pagesel Get_HID_Descriptor
btfsc STATUS,Z
goto Get HID_Descriptor

GetCh9Descriptor
movlw high StartGDindex
movwf PCLATH

bcf STATUS, C

set up PCLATH with the current address
set up pclath for the computed goto

movf BufferData+(wValue+l),w move descriptor type into w
andlw 0x03

addlw low StartGDindex
btfsc STATUS,C
incf PCLATH,f
movwf PCL

StartGDindex
goto
goto
goto
goto

wrongstate
Get_Device Descriptor
Get_Config_Descriptor
Get String_Descriptor

was there
yes, bump
adjust PC

0
1

3
2

; keep things under control

an overflow?
PCLATH

**************************"***
Looks up the offset of the device descriptor via the low order byte
of wValue. The pointers are set up and the data .is copied to the
buffer, then the flags are set.

EP0_start points to the first word to transfer
EP0 end points to the last, limited to the least of the message length

or the number of bytes requested in the message (wLength).
EP0_maxLength is the number of bytes to transfer at a time, 8 bytes
*********************************+********************************

Get Device Descriptor
movlw GET DESCRIPTOR
movwf

movlw
movwf

movlw
movwf

USE dev_req

8
EP0_maxLength

low DeviceDescriptor
EP0 start

movlw high DeviceDescriptor
movwf EP0 start+l

pagesel Descriptions
call Descriptions
movwf EP0 end

starts in bank 2

currently processing a get descriptor request

get length of device descriptor
save length

movf BufferData+(wLength+l) ,f move it to itself, check for non zero.
pagesel DeviceEndPtr
btfss STATUS,Z
goto DeviceEndPtr

request length

subwf
movf

BufferData+wLength,w
BufferData+wLength,w

if zero, we need to compare EP0 end to requested length.
if not, no need to compare. EP0 end is shorter than

compare agaic1st requested length

www.manaraa.com

btfss
movwf

DeviceEndPtr

STATUS,C
EP0 end

incf EP0 end,f

126

pagesel copy_descriptor_to EP0
call copy_descrrptor to EP0

return

***************************************~*****************************
Looks up the offset of the config descriptor via the low order byte
of wValue. The pointers are set up and the data is copied to the
buffer, then the flags are set.

EP0_start points to the first word to transfer
EP0 end points to the last, limited to the least of the message length

- or the number of bytes requested in the message (wLength).
EP0_maxLength is the number of bytes to transfer at a time, 8 bytes
**

Get_Config_Descriptor ; starts in bank2
movlw GET DESCRIPTOR
movwf USB_dev_req ; currently processing a get descriptor request

bcf STATUS,C
rlf BufferData+wValue,w

pagesel Config_desc_index
call Config_desc_index translate index to offset into descriptor table
movwf EP0 start
bcf STATUS,C
rlf
addlw
call
movwf

movlw
addwf
btfsc
incf

BufferData+wValue,w
1
Confrg_desc index
EP0 start+l

2
EP0 start,f
STATUS,C
EP0 start+l,f

pagesel Descriptions
call Descriptions
movwf EP0 end

movlw
subwf
btfss
decf

2
EP0 start,f
STATUS,C
EP0 start+l,f

point to high order byte
translate index to offset into descriptor table

bump pointer by 2 to get the complete descriptor
length, not just config descriptor

get length of the config descriptor
Get message length

move EP0 start pointer back to beginning

movf BufferData+(wLength+l),f test for 0
pagesel CmpLowerByte
btfsc STATUS,Z
goto CmpLowerByte

pagesel ConfigEndPtr
goto ConfigEndPtr

request length

CmpLowerByte
movf EP0 end,w
subwf BufferData+wLength,w

pagesel ConfigEndPtr
btfsc STATUS,C
goto

Limit Size
movf
movwf

ConfigEndPtr

ConfigEndPtr

BufferData+wLength,w
EP0 end

movlw 8

if not, no need to compare. EP0 end is shorter than

compare against requested length

if requested length is shorter ..
sa·ve it.

www.manaraa.com

movwf
incf

EP0_maxLength
EP0_end,f

pagesel copy_descriptor to EP0
call copy_descriptor_to_EP0
return

127

**
Set up to return String descriptors
Looks up the offset of the string descriptor via the low order byte
of wValue. The pointers are set up and the data is copied to the
buffer, then the flags are set.
**************************************~***************************

Get_String_Descriptor ; starts in bank2
movlw GET STRING DESCRIPTOR
movwf USB_dev_req

movf BufferData+windex,w
pagesel not_string0

btfss STATUS,Z

currently processing a get descriptor request

goto
movf
btfss
goto
movlw
movwf
movlw
movwf

not_string0
BufferData+(windex+l),w
STATUS,Z
not_string0
low String0
EP0 start
high String0
EP0 start+l

pagesel found_ string
goto found string

not string0
movlw
movwf
movlw
movwf
clrf

check_langid

high (String0+2)
EP0 start+l
low (String0+2)
EP0 start
inner

pagesel StringDescriptions
call StringDescriptions
incf EP0 start,f
subwf BufferData+windex, w
pagesel wrong_langid
btfss STATUS, Z
goto
pagesel
call
subwf
pagesel
btfsc
goto

wrong_langid
StringDescriptions
StringDescriptions
BufferData+(windex+l), w
right langid
STATUS, Z
right_langid

wrong_langid
incf EP0 start,f
incf inner,f
movlw low String0 end
subwf EP0_start,w

pagesel check langid
btfss STATUS,C
goto check_langid
clrf USB dev_req
pagesel wrongstate
goto wrongstate

right_langid
movlw 6
subwf BufferData+wValue,w

pagesel right string

compare EP0_start to the addr of
the last langid

if EP0_start is equal or lager,
we've checked all langid and didn't find it
clear USB_dev req, since GET descriptor is over

number of strings we have per language+ 1

www.manaraa.com

btfss
goto
clrf

STATUS,C
right_string
USB dev_req

pagesel wrongstate
goto wrong state

right_string
rlf BufferData+wValue,w
movwf EPO start+l
movf
pagesel
call
movwf
incf
movf
call
movwf

found_string

inner,w
string_index
string_index
EPO start
EPO start+l,f
inner,w
string_index
EPO start+l

128

pagesel StringDescriptions
call StringDescriptions
movwf EPO end

get length of the string descriptor
save length

subwf
movf
btfss
movwf

BufferData+wLength,w
BufferData+wLength,w
STATUS,C

compare against requested length
if requested length is shorter ..

EPO end save it.

movlw
movwf

8 each transfer may be 8 bytes long

incf
pagesel
call
return

EPO_maxLength

EPO_end,f
copy_descriptor to EPO
copy_descriptor_to_EPO

**
Stalls the EPO endpoint to signal that the command was not recognised.
This gets reset as the result of a Secup Transaction.
**

wrongstate
global wrongstate

banksel UEPO
bsf UEPO,EP STALL
bcf STATUS,RPO back to page 2

return

Loads the device status byte into the EPO In Buffer.
**

Get Device Status starts in bank2
bsf STATUS,RPO
movf BDOIAL,w get buffer pointer
movwf FSR
bcf STATUS,RPO bank 2
bsf
movf
movwf
incf
clrf

STATUS,IRP select indirectly banks 2-3

bsf
movlw
movwf
movlw
movwf
return

USE status device,w; get device status byte
INDF
FSR,f
INDF

STATUS,RPO bank 3
Ox02
BDOIBC set byte coun~ to 2
OxC8
BDOIST Data l packet, set owns bit

www.manaraa.com

12 9

A do nothing response. Always returns a two byte record, with all
bits zero.
**

Get Interface Status
bsf STATUS, RPO

movf USWSTAT, w
xorlw ADDRESS STATE

starts in bank 2
bank 3

pagesel Get_Interface Status2
btfss STATUS, z
goto Get Interface Status2

bcf STATUS, RPO bank 2
movf BufferData+windex, w
pagesel Get_Interface Status2
btfss STATUS, Z
goto Get Interface Status2

Get Interface Status2
bsf STATUS, RPO bank3
movf
xorlw

USWSTAT,w
CONFIG STATE

pagesel wrongstate
btfss STATUS, z
goto wrongstate

bcf
movf
sublw

STATUS, RPO
Buf±erData+windex,w
(NUM_INTERFACES-1)

if Interface< NUM INTERFACES

pagesel wrongstate
btfss STATUS, C
goto wrong state

Get Interface Status end
movf

addlw
movwf
bsf
movf
movwf

BufferData+windex,w
low USB Interface

get interface ID

FSR
STATUS,IRP
INDF,w
temp store in temp register

bsf
movf
movwf
movf
movwf

STATUS,RP0
BDOIAL,w
FSR
temp,w
INDF

bank3
get address of buffer

load temp
write byte to buffer

set byte count to 2
movlw
movwf
movlw
movwf
return

Ox02
BDOIBC
0xcB
BDOIST

DATAl packet, DTS enabled
give buffer back to SIE

Returns th·e Endpoint stall bit via a 2 byte in buffer
~*************

Get_Endpoint_Status
movlw Ox Of

; starts in bank 2

andwf BufferData+windex,w
xorlw OxOl is

pagesel get EPl status
btfsc STATUS,Z
goto get EPl status

movlw Ox Of

get endpoint,
it EPl?

andwf BufferData+windex,w ; get endpoint,
xorlw 0x02 is it EP2?

pagesel wrongstate

strip off direction bit

strip off direction bit

www.manaraa.com

btfss
goto

STATUS,Z
wrongstate

get EP2 status
bcf STATUS,C
bsf STATUS,RP0
btfsc UEP2,EP_STALL
bsf STATUS,C

pagesel build_status buffer
goto build status buffer

get EPl status
bcf STATUS,C
bsf STATUS,RP0
btfsc UEPl,EP_STALL
bsf STATUS,C

build status buffer

130

movf BD0IAL,w get address of buffer
movwf FSR
clrf INDF clear byte C i!"l buffer
rlf INDF,f rotate in ca:::ry bit (EP
incf FSR,f bump pointer
clrf INDF clear byte

movlw 0x02
movwf BD0IBC set byte count to 2
movlw Oxes
movwf BD0IST Data 1 packet, set owns
return

stall bit)

bit

**********************~*********************************~~***********
The low order byte of wValue now has the new device address as assigned
from the host. Save it in the UADDR, transition to the ADDRESSED state
and clear the current configuration.
This assumes the SIE has already sent the status stage of the transaction
as implied by Figure 3-35 of the DOS (Rev A-7)
**

Set Address ; starts in bank 2
movf BufferData+wValue,w ; new address in low order byte of wValue
movwf USB_address_pending

pagesel wrongstate
btfsc USB address_pending, 7
goto wrongstate
pagesel Send_0Len_pkt
call Send_0Len_pkt

movlw SET ADDRESS
movwf
return

USB dev_req

; send zero length packet

currently processing a get descriptor request

finish set address starts in bank 2
clrf USB dev req no request pending
clrf USB_Curr_Config make sure current configuration is 0
movf USB_address_pending,w
bsf STATUS, RPO
movwf UADDR ; set the device address

pagesel endfinishsetaddr
btfsc STATUS,Z was address 0?
goto endfinishsetaddr

movlw ADDRESS STATE
movwf USWSTAT

#ifdef SHOW ENUM STATUS
banksel PORTE
bsf PORTB,2
banksel USWSTAT

#endif

endfinishsetaddr

yes: don't change state

non-zero: transition to addressed state
transition to addressed state

set bit 2 to indicate Addressed state
not necessary, Send 0LenPkt resets bank bits

www.manaraa.com

131

return

**
only feature valid for device feature is Device Remote wakeup
**

Clear Device Feature ; starts in bank2 - -BufferData+wValue,w movf
xorlw 0xOl was it a Device Remote wakeup? If not, return STALL,

pagesel wrongstate
btfss STATUS,Z since we only implement this feature on this device.
goto wrongstate

right_state_clear_feature
bcf USB_status_device,l set device remote wakeup

pagesel Send_0Len_pkt
call Send_OLen_pkt
return

**
Only endpoint feature is Endpoint halt.
**

Clear_Endpoint_Feature ; starts in bank 2
movf BufferData+wValue, w
pagesel wrongstate
btfss STATUS, z ; only valid feature is 0 (Remote Wakeup)
goto
movf
btfss
goto

bsf

wrongstate
BufferData+(wValue+l), w
STATUS, Z
wrongstate

STATUS, RPO ; bank3
movlw 0x03 if ((USWSTAT & 0x03) ADDRESS STATE)
andwf USWSTAT, w
xorlw ADDRESS STATE
pagesel clear_endpoint_feature2
btfss STATUS' z
goto clear_endpoint_feature2
bcf STATUS, RPO
movlw
andwf
btfss

0x0F
BufferData+windex, w
STATUS, Z

goto clear_endpoint_feature2
bsf STATUS, RPO
bcf UEP0, 0
pagesel Send_0Len_pkt
call Send_ 0Len _pkt
return

clear_endpoint_feature2
bsf STATUS, RPO
movlw 0x03
andwf USWSTAT, w
xorlw CONFIG STATE
pagesel wrongstate
btfss STATUS, Z
goto wrongstate
bcf STATUS,
movlw 0x0F

RPO

andwf BufferData+windex,
sublw 2
pagesel wrongstate
btfss STATUS, C
goto
bsf
movlw
andwf
bsf
addlw
movwf

wrongstate
STATUS, IRP

0x0F
BufferData+windex,w

STATUS, RPO
UEP0&0xFF
FSR

w

; bank2
if ((Bufferdata+windex & 0x07) 0)

bank 3

if ((USWSTAT & 0X03) CONFIG_STATE)

; bank2

if (BufferData+windex < 3)

bank3

www.manaraa.com

bcf INDF, 0
pages el Send 0Len _pkt
call Send_0Len_pkt
return

Clear Interface Feature
pagesel wrongstate
goto wrongstate

132

starts in bank2

**
only feature valid for device feature is Device Remote wakeup
Y****x****

Set Device Feature ; starts in bank 2
movf BufferData+wValue,w; get high order byte of wValue
xorlw 0x0l ; was it a Device Remote wakeup?

pagesel wrongstate
btfss STATUS,Z

error goto
bsf

wrongstate ; request
USB_status device,1 ; set

pagesel Send_0Len_pkt
device remote wakeup

call Send_0Len_pkt
return

**
Only endpoint feature is Endpoint halt.
**

Set_Endpoint Feature starts in bank 2
movf BufferData+wValue, w
pagesel wrongstate
btfss STATUS, Z ; only valid feature is 0 (Remote Wakeup)
goto
movf
btfss
goto

bsf

wrong state
BufferData+(wValue+l), w
STATUS, Z
wrong state

STATUS, RPO ; bank3
movlw Ox03 if ((USWSTAT & Ox03) ADDRESS STATE)
andwf USWSTAT, w
xorlw ADDRESS STATE
pagesel set endpoint feature2
btfss STATUS, Z
goto
bcf
movlw
andwf
btfss

set endpoint_feature2
STATUS, RPO

0xOF
BufferData+windex, w
STATUS, Z

goto set endpoint feature2
bsf STATUS, RPO
bsf UEPO, 0
pages el Send 0Len _pkt
call Send_OLen_pkt
return

set_endpoint feature2
bsf STATUS, RPO
movlw Ox03
andwf USWSTAT, w
xorlw CONFIG STATE
pagesel wrongstate
btfss STATUS, Z
goto
bcf
movlw
andwf
sublw

wrongstate
STATUS, RPO

0x0F
BufferData+windex, w
2

pagesel wrongstate
btfss STATUS, C
goto
bsf

wrong state
STATUS, IRP

; bank2
if I (Bufferdata+windex & 0x07) 0)

bank 3

if I (USWSTAT & OX03) CONFIG_STATE)

; bank2

if (BufferData+windex < 3)

www.manaraa.com

133

movlw OxOF
andwf BufferData+windex,w
bsf STATUS, RPO
addlw UEPO&OxFF
movwf FSR
bsf INDF, 0
pages el Send_ OLen _pkt
call Send_ OLen_pkt
return

Set Interface Feature - -
pageselwrongstate

goto wrongstate

starts in bank 2

invalid request

********************+*************************************~*********
Get configuration returns a single byte Datal packet indicating the
configuration in use.
Default State - undefined
Addressed State - returns 0
Configured state~ returns current configured state.
**

Get_Configuration
bsf STATUS, RPO
movf low BDOIAL,w
movwf FSR
bcf STATUS, RPO
bsf STATUS,IRP
movf USB_Curr_Config,w
movwf INDF
bsf STATUS, RPO
movlw OxOl
movwf BDOIBC
movlw Oxes
movwf BD0IST
return

starts in bank 2

get address of buffer

indirectly to banks 2-3

write byte to buffer

set byte count to 1
DP..TAl packet. DTS enabled
give buffer back to SIE

**
Set configuration u3e~ the configuration selected by the low order
byte of wValue. Sets up a zero length datal packet as a reply.
~***************

Set_Configuration ; starts in bank 2
All we do is set a meaningless number. This'll
need more code here to actually give meaning to each configuration
we choose.

movf BufferData+wValue,w is it a valid configuration?
sublw NUM CONFIGURATIONS

pagesel wrongstate
btfss STATUS,C ; if config <; num configs, request appears valid
goto

movf
movwf

wrongstate

BufferData+wValue,w
USB_Curr_Config; store new state in configuration

pagesel AckSetConfigCmd
btfsc STATUS,Z was the configuration zero?
goto AckSetConfigCmd yes: stay in the addressed state

bsf
movlw

STATUS, RPO
CONFIG STATE

movwf USWSTAT
#ifdef SHOW ENUM STATUS

banksel PORTE
bsf PORTB,3

#endif

AckSetConfigCmd
pagesel Send_0Len_pkt

call Send_0Len pkt

bank 3
No: transition to configured
save new state.

set bit 3 to show configured

www.manaraa.com

134

These configure the EPl and EP2 endpoints. Change these as necessary
for your application.

banksel BDlOAL
movlw USB Buffer+OxlO
movwf BDlOAL
movlw 8
movwf BDlOBC
movlw Ox88
movwf BDlOST

movlw 8
movwf BDlIBC

movlw USB Buffer+Oxl8
movwf BDlIAL
movlw Ox48
movwf

movlw
movwf
movlw
movwf
movlw
movwf

BDlIST

USB Buffer+Ox20
BD20AL
8
BD20BC
Ox88
BD20ST

movlw 8
movwf BD2IBC

movlw USB Buffer+Ox20
movwf BD2IAL
movlw Ox48
movwf BD2IST

Endpoint 1 OUT gets a buffer
set up buffer address

set byte count
set own bit of EPl (SIE can write)

; set byte count
Endpoint l IN gets a buffer
set up buffer address
set own bit of EPl (PIC can write)

Endpoint 2 OUT gets a buffer
set up buffer address

set byte count
set own bit of EP2 (SIE can write)

; set byte count
EPl In and EP2 In share a buffer
set up buffer address
set own bit of EP2 (PIC can write)

Set up the Endpoint Control Registers. The following patterns are defined
ENDPT DISABLED - endpoint not used
ENDPT IN ONLY - endpoint supports IN transactions only
ENDPT OUT ONLY - endpoint supports OUT transactions cnly
ENDPT CONTROL - Supports IN, OUT and CONTROL transactions - Only use with EPO
ENDPT_NON_CONTROL - Supports both IN and OUT transactions

movlw ENDPT NON CONTROL
movwf
movlw
movwf

UEPl enable EP's 1 and 2 for In and Outs ...
ENDPT NON CONTROL
UEP2

pagesel SetConfiguration
movf USB_Curr_Config,w
call SetConfiguration
pagesel Set Configuration

return

call SetConfiguration etc. after configuration changed
if you have multiple configurations

Get interface returns a single byte Datal packet indicating the
interface in use.

- undefined Default State
Addressed State - Not valid - returns stall
Configured state - returns current configured state.
**

Get Interface ; STARTS IN BANK 2
bsf STATUS, RPO
movf USWSTAT,w ; Only valid in the configured state

xorlw CONFIG STATE
pagesel wrongstate
btfss STATUS, Z
goto

bcf
movf
sublw

wrongstate

STATUS, RPO
BufferData+windex,w
(NGM _ INTERFACES -1)

pagesel wrongstate
btfss STATUS, C
goto wrongstate

if Interface< NUM INTERFACES

www.manaraa.com

135

movf
addlw
movwf
bsf
movf
movwf

BufferData+windex,w
low USB Interface
FSR

get interface ID

bsf
movf
movwf
movf
movwf

movlw
movwf
movlw
movwf
return

STATUS,IRP
INDF,w
temp

STATUS,RPO
BDOIAL,w
FSR
temp,w
INDF

OxOl
BDOI.BC
Oxes
BDOIST

store in temp register

bank 3
get address of buffer

load temp
write byte to buffer

set byte count to 1
DATAl packet, DTS enabled
give buffer back to SIE

**
Set configuration uses the configuration selected by the low order
byte of wValue. Sets up a zero length datal packet as a reply.
**

Set Interface ; start bank 2
-bsf STATUS, RPO

movf USWSTAT,w
bcf STATUS,RPO
andlw Ox03
xorlw CONFIG STATE

pagesel wrongstate
btfss STATUS,Z
goto wrong state

; bank3
test to make sure we're configured
bank2

movf BufferData+windex,w get interface
addlw USB Interface add offset to array
movwf FSR
bsf STATUS,IRP indirectly to banks 2-3
movf BufferData+wValue,w; get alternate interface
movwf INDF ; store in array

All we do is set a meaningless number. This'll
need more code here to actually give meaning to each configuration
we choose.

pagesel Send_OLen_pkt
call Send_OLen_pkt
return

copies the next chunk of buffer descriptor over to the EPO In buffer.
Inputs:

EPO_start - points to first byte of configuration table to transfer
EPO end - total number of bytes to transfer
EPO=maxLength - maximum number of bytes that can be sent during
a single transfer

toggles the data0/1 bit before setting the UOWN bit over to SIE.
**

copy descriptor to EPO
global copy_descriptor_to_EPO
banksel BDOIAL
bankisel BDOIAL
movf
movwf

BDOIAL,w
FSR

banksel bufindex
clrf bufindex

gdd_loop
movf bufindex,w
subwf EPO_maxLength,w

pagesel end_gdd_loop

get buffer address

bufindex = 0

while (bufindex < EPO_maxLength)
&& (EPO start< EPO_end)

www.manaraa.com

btfsc
goto

STATUS,Z
end_gdd _,oop

pagesel gdd_copy_loop
decfsz EPO_end, f
goto gdd_copy_loop

136

pages el end _gdd _ loop short _ _packet
goto end_gdd_loop short packet

gdd_copy loop
pagesel Descriptions
call Descriptions
movwf INDF

incf bufindex,f
incf FSR,f

pagesel gdd_loop
incfsz EPO_start,f
goto gdd_loop
incf EPO_start+l,f
goto gdd_loop

end gdd_loop_short_packet
clrf USB dev req

end_gdd_loop
movf bufindex,w
bsf STATUS,RPO
movwf BDOIBC
movlw (OxOl«DATAOl)
xorwf BDOIST,w
andlw (OxOl<<DATAOl)
iorlw Ox88
movwf BDOIST
pagesel copy descriptor
return

SetConfiguration

to

we're sending a short packet, clear the device request

write nu~~er of bytes to byte count
Bank 3

toggle data0/1 b' +-

clear PID bits
set OWN and DTS bits
write the wt1ole mess back

EPO

This function is called when the host issues a Set Configuration
command. The housekeeping within USB is handled within the CH9 commands
This function should be filled in to give meaning to the command within
the application.

SetConfiguration is called from within the ISR so this function should
be kept as short as possible.

SetConfiguration
global SetConfiguration
return

Vendor Specific calls
control is transferred here when bmRequestType bits 5 & 6 = 10 indicating
the request is a vendor specific request. This function then would
interpret the bRequest field to determine what action is required.
The end of each vendor specific command should be terminated with a
return.
~*******~**********

CheckVendor
global CheckVendor
return *** remove this line and uncomment out the remainder

end

www.manaraa.com

137

APPENDIX F: MICROCONTROLLER FIRMWARE
Hidclass.asm

Software License Agreement

The software supplied herewith by Microchip Technology Incorporated (the "Company")
for its PICmicro(r) Microcontroller is intended and supplied to you, the Company's
customer, for use solely and exclusively on Microchip PICrnicro Microcontroller
products.

The software is owned by the Company and/or its supplier, and is protected under
applicable copyright laws. All rights are reserved. Any use in violation of the
foregoing restrictions may subject the user to criminal sanctions under applicable
laws, as well as to civil liability for the breach of the terms and conditions of
this license.

THIS SOFTWARE IS PROVIDED IN AN "AS IS" CONDITION. NO WARRANTIES, WHETHER EXPRESS,
IMPLIED OR STATUTORY, INCLUDING, BUT NOT LIMITED TO, IMPLIED WARRANTIES OF
MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE APPLY TO THIS SOFTWARE. THE
COMPANY SHALL NOT, IN ANY CIRCUMSTANCES, BE LIABLE FOR SPECIAL, INCIDENTAL OR
CONSEQUENTIAL DAMAGES, FOR ANY REASON WHATSOEVER.

filename: HIDCLASS.ASM

Implements USE Human Interface Device (HID) class specific commands.

Author (s): Dan Butler and Reston Condit
Microchip Technology Inc Company:

Revision: 1. 24
Date: 5 March 2002
Assembled using: MPASM 2. 61

;##

include files:
Pl6C765.inc
usb defs.inc

Rev 1. 00
Rev 1.10

;##
#include <pl6C765.inc>
#include "usb defs.inc"

extern
extern
extern
extern
extern
extern
extern
extern
extern
extern
extern
extern
extern
extern

global

USBBANK

ReportDescriptor
ReportDescriptorLen
HID_Descriptor
Descriptions
BufferData
BufferDescriptor
wrongstate
USB_dev_req
EP0_maxLength
EP0 start
EP0 end
copy_descriptor to EP0
Send_0Len_pkt
Report desc inaex

ClassSpecificRequest

code

Get Class Specific Descriptor
*****************~******~***************+++~+***~*~****r**********

www.manaraa.com

ClassSpecificRequest
pagesel Dev2HostHIDRequest
movf BufferData+bmRequestType,w
xorlw 0x21
btfsc STATUS,Z
goto Host2DevHIDRequest

pagesel Host2DevReportRequest
movf BufferData+bmRequestType,w
xorlw 0x22
btfsc STATUS,Z
goto Host2DevReportRequest

pageselHost2DevPhysicalRequest
movf BufferData+bmRequestType,w
xorlw 0x23
btfsc STATUS,Z
goto Host2DevPhysicalRequest

pagesel Dev2HostHIDRequest
movf BufferData+bmRequestType,w
xorlw 0xAl
btfsc STATUS,Z
goto Dev2HostHIDRequest

pageselDev2HostReportRequest
movf BufferData+bmRequestType,w
xorlw 0xA2
btfsc STATUS,Z
goto Dev2HostReportRequest

pageselDev2HostPhysicalRequest
movf BufferData+bmRequestType,w
xorlw 0xA3
btfsc STATUS,Z
goto Dev2HostPhysicalRequest

pagesel wrongstate
goto wrongstate

138

Need to add code if you need to handle optional functions
such as get/set_idle. Otherwise, send STALL buy calling
to signal the host that the feature is not implemented.

Host2DevHIDRequest
movf BufferData+bRequest,w
xorlw 0x0l

pagesel GetHIDReport
btfsc STATUS,Z
goto GetHIDReport

movf BufferData+bRequest,w
xorlw 0x02

pagesel Getidle
btfsc STATUS,Z
goto Get Idle

movf BufferData+bRequest,w
xorlw 0x03

pagesel GetPhysical
btfsc STATUS,Z
goto

movf
xorlw

Get Physical

BufferData"bRequest,w
0x06

pagesel Get_Report Descriptor
btfsc STATUS,Z
goto Get_Report Descriptor

www.manaraa.com

movf BufferData+bRequest,w
xorlw 0x09

pagesel SetHIDReport
btfsc STATUS,Z
goto SetHIDReport

movf BufferData+bRequest,w
xorlw 0x0A

pagesel Setidle
btfsc STATUS,Z
goto Setidle

movf BufferData+bRequest,w
xorlw 0x0B

pagesel SetProtocol
btfsc STATUS,Z
goto SetProtocol

pagesel wrongstate
goto wrongstate

139

**
Get Report Descriptor
Returns the Mouse Report descriptor
Checks for the report type (input, output or Feature).
~*******

Get Report Descriptor
global Get_Report_De~criptor
banksel EP0 start
movlw GET DESCRIPTOR
movwf USB_dev_req currently processing a get descriptor request

movlw
movwf

8
EP0_maxLength

movf BufferData+(wValue+l),w check report ID
xorlw 0x0l

pageselTryOutputReport
btfsc STATUS,Z
goto

bcf

TryOutputReport

STATUS,C
rlf BufferData+windex,w
pagesel Report desc index
call Report_desc_index
movwf EP0 start
bcf STATUS,C
rlf
addlw

BufferData+windex,w
1

call Report_desc index
movwf EP0 start+l

pagesel Descriptions
call
movwf
incf
pagesel
goto

Descriptions
EP0 end
EP0_start,f
CheckReportLength
CheckReportLength

TryOutputReport

was it an Input Report?

translate index to offset into descriptor table

poinc to high order byte
translate index to offset into descriptor table

movf BufferData+(wValue+l),w check report ID
xorlw 0x02

pagesel TryFeatureReport
btfsc STATUS,Z
goto TryFeatureReport

bcf STATUS,C
rlf BufferData+windex,w

pagesel Report desc_index

was ic an Output Reporc?

www.manaraa.com

call
movwf
bcf
rlf
addlw

Report_desc index
EP0 start
STATUS,C
BufferData+windex,w
1

call Report_desc index
movwf EP0 start+l

pagesel Descriptions
call Descriptions
movwf EP0 end
incf EP0_start,f
pagesel CheckReportLength
goto CheckReportLength

TryFeatureReport

140

translate index to offset into descriptor table

point to high order byte
translate index to offset into descriptor table

movf BufferData+(wValue+l),w; check report ID
xorlw 0x03 ; was it an Output Report?
pagesel wrongstate
btfsc STATUS,Z
goto wrong state

Fill EPOIN buffer here ...
return

CheckReportLength
movf BufferData+(wLength+l) ,w; Is the host requesting more than 255 bytes?

pagesel nolimit rpt
btfss STATUS,Z ; If so, the host is requesting more than we have
goto nolimit rpt

check low_bytes
movf BufferData+wLength,w
subwf EP0_end,w ; if not, compare the amount the host is request
movf BufferData+wLength,w; with the length of the descriptor
btfsc STATUS,C if the host is request less than the descriptor
movwf EP0 end ; length, send only as much as what the host wants

nolimit_rpt
incf
pagesel
call
return

EP0_end,f
copy_descriptor_to EP0
copy_descriptor_to_EP0

Get_HID_Descriptor
global Get HID Descriptor
movlw GET DESCRIPTOR
movwf

movlw
movwf

movlw
movwf

USB dev_req

8
EP0_maxLength

; currently processing a get descriptor request

low HID_Descriptor
EP0 start

movlw high HID_Descriptor
movwf EP0 start+ 1
pagesel Descriptions
call Descriptions get the HID descriptor length
movwf EP0 end

movf BufferData+(wLength+lJ,f
pagesel nolimi t hid

btfss STATUS,Z
goto

subwf
movf
btfss
movwf

nolimit hid

BufferData+wLength,w
BufferData+wLength,w
STATUS,C
EP0 end

www.manaraa.com

nolimit hid
incf EP0 end,f
pagesel copy_descriptor_to_EP0
call copy_descriptor to EP0
return

Get Physical_Descriptor
return

Check Class Specific_IN
global Check Class Specific_IN
pagesel copy_descriptor_to_EP0
movf USB_dev_req,w
xorlw GET DESCRIPTOR
btfsc STATUS,Z
call
return

copy_descriptor to EP0

141

**
These requests are parsed out, but nothing is actually done with them
currently they simply stall EP0 to show that the request is not
supported. If you need tc support them, fill in the code.
+***********************

Host2DevReportRequest
Host2DevPhysicalRequest
Dev2HostHIDRequest
Dev2HostReportRequest
Dev2HostPhysicalRequest
GetHIDReport
Getidle
Get Physical
Set Protocol
Setidle

pagesel wrongstate
goto wrongstate

SetHIDReport
movlw HID SET REPORT
movwf USB_dev req
banksel BD0OST
return

end

store status

www.manaraa.com

142

APPENDIX G: MICROCONTROLLER FIRMWARE
Descript.asm

Software License Agreement

The software supplied herewith by Microchip Technology Incorporated (the "Company")
for its PICmicro(r) Microcontroller is intended and supplied to you, the Company's
customer, for use solely and exclusively on Microchip PICmicro Microcontroller
products.

The software is owned by the Company and/or its supplier, and is protected under
applicable copyright laws. All rights are reserved. Any use in violation of the
foregoing restrictions may subJect the user to criminal sanctions under applicable
laws, as well as to civil liability for the breach of the terms and conditions of
this license.

THIS SOFTWARE IS PROVIDED IN AN "AS IS" CONDITION. NO WARRANTIES, WHETHER EXPRESS,
IMPLIED OR STATUTORY, INCLUDING, BUT NOT LIMITED TO, IMPLIED WARRANTIES OF
MERCHANTABILITY AND E'ITNESS FOR A PARTICULAR PURPOSE APPLY TO THIS SOFTWARE. THE
COMPANY SHALL NOT, IN ANY CIRCUMSTANCES, BE LIABLE FOR SPECIAL, INCIDENTAL OR
CONSEQUENTIAL DAMAGES, FOR ANY REASON WHATSOEVER.

filename: DESCRIPT.ASM

This file contains a set of descriptors for a standard mouse.

Author:
Company:

Dan Butler and Reston Condit
Microchip Technology Inc

Revision: 1.24
Date: 5 March 2002
Assembled using MPASM 2.61

;#################################t##

include files:
Pl6C765.inc
usb defs.inc

Rev 1. 00
Rev 1.10

;##
#include <pl6C765.inc>
#include "usb defs.inc"

USBBANK code
global
global
global
global
global
global
global
global
global
global
global

extern

Config desc_index
Report desc index
Descriptions
string index
DeviceDescriptor
ReportDescriptor
ReportDescriptorLen
String0
String0_end
StringDescriptions
HID_Descriptor

EP0 start
extern temp
extern temp2

temp var used in get config index
another temp, in bank2

**********************************~*******************************
Given a configuration descriptor index, returns the beginning address
of the descriptor within the descriptions table
********************~-**********************+**********************

www.manaraa.com

143

Config_desc_index
movwf temp

CDI

movlw HIGH CDI start
movwf PCLATH
movlw low CDI start
addwf temp,w
btfsc STATUS,C
incf PCLATH,f
movwf PCL
start this
retlw low Configl
retlw high Configl

more configurations
retlw low Config2
retlw high Config2
etc

table calculates the offsets for each configuration
descriptor from the beginning
of the table, effectively

can be added here

**
Given a report descriptor index, returns the beginning address
of the descriptor within the descriptions table
**

Report_desc_index
movwf temp

RDI

movlw HIGH RDI start
movwf PCLATH
movlw low RDI start
addwf temp,w
btfsc STATUS,C
incf PCLATH,f
movwf PCL
start ; this table calculates
retlw low ReportDescriptorLen
retlw high ReportDescriptorLen

more reports can be added here
retlw low ReportDescriptorLen2
retlw high ReportDescriptorLen2
etc

the offsets for each report
descriptor from the beginning
of the table, effectively

**
This table is polled by the host immediately after USB Reset has been released.
This table defines the maximum packet size EPO can take.
See section 9.6.1 of the Rev 1.0 USB specification.
These fields are application DEPENDENT. Modify these to meet
your specifications.
the offset is passed in PO and Pl (PO is low order byte).
~*****************

Descriptions
banksel EPO start
movf
movwf
movf
movwf

EPO_start+l,w
PCLATH
EPO_start,w
PCL

DeviceDescriptor
StartDevDescr

retlw Oxl2
retlw OxOl
retlw OxOO
retlw OxOl
retlw OxOO
retlw OxOO
retlw OxOO
retlw Ox08
retlw OxDB
retlw Ox04
retlw OxOO
retlw OxOO
retlw Ox41
retlw Ox04

bLength
bDescType
bcdUSB

Length of this descriptor
This is a DEVICE descripto~
USB revision 1.10 (low byte)

high byte
bDeviceClass
bDeviceSubClass
bDeviceProtocol

zero means each interface operates independently

bMaxPacketSizeO - inited in Usbinit()
idVendor - Ox04D8 is Microchip Vendor ID
high order byte
idProduct

bcdDevice

www.manaraa.com

retlw
retlw
retlw
retlw

OxOl
OxC2

iManufacturer
iProduct

OxOO iSerialNumber - 3

144

NUM CONFIGURATIONS bNumConfigurations

This table is retrieved by the host afier the address has been set.
This table defines .the configurations available for the device.
See section 9.6.2 of the Rev 1.0 USB specification (page 184).
These fields are application DEPENDENT.
Modify these to meet your specifications.
~*y*

Configl
retlw
retlw
retlw
retlw
retlw
retlw
retlw
retlw
retlw

Interfacel
retlw
retlw
retlw
retlw
retlw
retlw
retlw
retlw
retlw

Ox09
Ox02

; bLength Length of this descriptor
2=CONFIGURATION ; bDescType

EndConfigl - Configl
OxOO
OxOl
OxOl
Ox04
OxAO
Ox32

Ox09
INTERFACE
OxOO
OxOO
OxOl
Ox03
OxOl
Ox02
OxOS

bNuminterfaces Numb.er of interfaces
bConfigValue Configuration Value
iConfig String Index for this config = #01
bmAttributes attributes - bus powered
MaxPower self-powered draws O mA from the bus.

length of descriptor

number of interface, 0 based array
alternate setting
number of endpoints used in this interface
interface class - assigned by the USB
boot device
interface protocol - mouse
index to string descriptor that describes this interface

HID Descriptor
retlw Ox09 descriptor size (9 bytes)

descriptor type (HID) retlw
retlw
retlw
retlw
retlw
retlw
retlw
retlw

Endpointl
retlw
retlw
retlw
retlw
retlw
retlw
retlw

EndConfigl

Ox21
OxOO
OxOl HID class release number (1.00)
OxOO Localized country code (none)
OxOl # of HID class descriptor to follow
Ox22 Report descriptor type (HID)
(end_ReportDescriptor - ReportDescriptor)
OxOO

length of descriptor

EPl, In
Interrupt

(1)

Ox07
ENDPOINT
OxBl
Ox03
Ox04
OxOO
OxOA

max packet size (4 bytes) low order by~e
max packet size (4 bytes) high order byte
polling interval (lOms)

ReportDescriptorLen
retlw low (end_ReportDescriptor-ReportDescriptorl

ReportDescriptor
retlw Ox05
retlw OxOl usage page (generic desktop)
retlw Ox09
retlw Ox02 usage (mouse)
retlw OxAl
retlw OxOl collection (application)
retlw Ox09
retlw OxOl usage (pointer)
retlw OxAl
retlw OxOO collection (linked)
retlw Ox05
retlw Ox09 usage page (buttons)
retlw Ox19

www.manaraa.com

145

retlw OxOl usage minimum (l)
retlw Ox29
retlw Ox03 usage maximum (3)
retlw Oxl5
retlw OxOO logical minimum (0)
retlw Ox25
retlw OxOl logical maximum (1)
retlw Ox95
retlw Ox03 report co-unt (3)
retlw Ox75
retlw OxOl report size (1 I
retlw Ox81
retlw Ox02 input (3 button bits)
retlw Ox95
retlw OxOl report count (1)
retlw Ox75
retlw Ox05 report size (5)
retlw Ox81
retlw OxOl input (constant 5 bit padding)
retlw Ox05
retlw OxOl usage page (generic desktop/
retlw Ox09
retlw Ox30 usage (X)
retlw Ox09
retlw Ox31 usage (Y)
retlw Oxl5
retlw Ox81 logical minimum (-127)
retlw Ox25
retlw Ox7F logical maximum (127)
retlw Ox75
retlw Ox08 report size i 8)
retlw Ox95
retlw Ox03 report count (2)
retlw Ox81
retlw Ox06 input (2 position bytes X & Y)
retlw OxCO end collection
retlw OxCO end collection

end ReportDescriptor

StringDescriptions
banksel EPO start
movf EPO start+l,w -movwf PCLATH
movf EPO start,w
movwf PCL

Given a configuration descriptor index, returns the beginning address
of the descriptor within the descriptions table
**

string index langid in W reg, string offset in EPO start
movwf temp
bcf STATUS,C
rlf temp, f
pagesel langid_index
call langid_index
movwf temp2
incf temp, f
pagesel langid_index
call langid_index
m6vwf temp

movf
movwf
movf
addwf
btfsc
incf
movwf

temp, w
PCLATH
ternp2,w
EPO_start+l,w
STATUS,C
PCLATH, f
PCL

www.manaraa.com

146

langid_index
movlw high langids
movwf PCLATH
movlw
addwf
btfsc
incf
movwf

langids
retlw
retlw
retlw
retlw

lang_l
retlw
retlw
retlw
retlw
retlw
retlw
retlw
retlw
retlw
retlw
retlw
retlw
retlw
retlw

lang_2
retlw
retlw
retlw
retlw
retlw
retlw
retlw
retlw
retlw
retlw
retlw
retlw

StringO
retlw
retlw
retlw
retlw
retlw
retlw

StringO_end
Stringl_ll

retlw
retlw
retlw
retlw
retlw
retlw
retlw
retlw
retlw
retlw
retlw
retlw
retlw
retlw
retlw

low langids
temp, w
STATUS,C
PCLATH,f
PCL

low lang_l
high lang_l
low lang_2
high lang_2

low
high
low
high
low
high
low
high
low
high
low
high
low
high

low
high
low
high
low
high
low
high
low
high
low
high

StringO
StringO
Stn.ngl 11
Stringl_ll
String2_11
String2_11
String3_11
String3_11
String4_11
String4_11
StringS_ll
StringS_ll
String6_11
String6_11

StringO
StringO
Stringl 12
Stringl_l2
String2_12
String2_12
String3_12
String3_12
String4_12
String4_12
String5_12
String5_12

string indexes of different languages

english
LangIDs

also point to LangID

low (Stringl_ll - StringO) ; length of string
Ox03 descriptor type 3?
Ox09 language ID (as defined by MS Ox0409)
Ox04
Ox04
Ox08

some other language ID for testing

String2_11-Stringl_ll ; length of string
Ox03 ; string descriptor type 3
'M'
OxOO
'i'
OxOO
'c'
OxOO
Ir'
OxOO
'o'
OxOO
'c'
OxOO
'h'

www.manaraa.com

147

retlw OxOO
retlw Ii I
retlw OxOO
retlw 'p'
retlw OxOO

String2_11
retlw String3 ll-String2 11
retlw Ox03
retlw 'P'
retlw OxOO
retlw Ii I
retlw OxOO
retlw 'c'
retlw OxOO
retlw '1'
retlw OxOO
retlw '6'
retlw OxOO
retlw 'C'
retlw OxOO
retlw '7'
retlw OxOO
retlw '4'
retlw OxOO
retlw '5'
retlw OxOO
retlw 'I'
retlw OxOO
retlw '7'
retlw OxOO
retlw '6'
retlw OxOO
retlw '5'
retlw OxOO
retlw
retlw OxOO
retlw 'U'
retlw OxOO
retlw 's'
retlw OxOO
retlw 'B'
retlw OxOO
retlw
retlw OxOO
retlw 'M'
retlw OxOO
retlw 'o'
retlw OxOO
retlw 'u'
retlw OxOO
retlw 's'
retlw OxOO
retlw 'e'
retlw OxOO

String3 11
retlw String4 ll-String3 11
retlw Ox03
retlw 'V'
retlw OxOO
retlw '1'
retlw OxOO
retlw
retlw OxOO
retlw '1'
retlw OxOO
retlw '1'
retlw OxOO

String4_ 11
retlw Strings ll-Stnng4 11

www.manaraa.com

retlw
retlw
retlw
retlw
retlw
retlw
retlw
retlw
retlw

StringS_ll
retlw
retlw
retlw
retlw
retlw
retlw
retlw
retlw
retlw
retlw
retlw
retlw
retlw
retlw

String6_11
Stringl_12

retlw
retlw
retlw
retlw
retlw
retlw
retlw
retlw
retlw
retlw
retlw
retlw
retlw
retlw
retlw
retlw
retlw
retlw
retlw
retlw

String2_12
retlw
retlw
retlw
retlw
retlw
retlw
retlw
retlw
retlw
retlw
retlw
retlw
retlw
retlw
retlw
retlw
retlw
retlw
retlw
retlw
retlw
retlw

Ox03
'C'
OxOO
'f'
OxOO

'g'
OxOO

'1'
OxOO

String6 11-StringS 1:
Ox03
'E'
OxOO
'P'
OxOO
'1'
OxOO
'0'
OxOO
'I'
OxOO
'n'
OxOO

148

; lang 2, chinese. String can be totally different than english
String2_12-String1_12 ; length of string
Ox03 ; string descriptor type 3
'M'
OxOO
Ii I
OxOO
'C'
OxOO
'r'
OxOO
'o'
OxOO
'c'
OxOO
'h'
OxOO
Ii I
OxOO
'p'
OxOO

String3 12-String2 12
Ox03
'P'
OxOO
Ii I
OxOO
, c'
OxOO
'1'
OxOO
'6'
OxOO
'C'
OxOO
'7'
OxOO
'4'
OxOO
'5'
OxOO
'I'
OxOO

www.manaraa.com

149

retlw '7'
retlw OxOO
retlw '6'
retlw OxOO
retlw 's'
retlw OxOO
retlw
retlw OxOO
retlw 'U'
retlw OxOO
retlw 'S'
retlw OxOO
retlw 'B'
retlw OxOO
retlw
retlw OxOO
retlw 'M'
retlw OxOO
retlw 'o'
retlw OxOO
retlw 'u'
retlw OxOO
retlw 's'
retlw OxOO
retlw 'e'
retlw OxOO

String3_ 12
retlw String4 12-String3 12
retlw Ox03
retlw 'V'
retlw OxOO
retlw '1'
retlw OxOO
retlw
retlw OxOO
retlw '1'
retlw OxOO
retlw '1'
retlw OxOO

String4_ 12
retlw Strings 12-String4 12
retlw Ox03
retlw 'C'
retlw OxOO
retlw 'f'
retlw OxOO
retlw 'g'
retlw OxOO
retlw '1'
retlw OxOO

Strings_ 12
retlw String6 12-String5 12
retlw Ox03
retlw 'E'
retlw OxOO
retlw 'P'
retlw OxOO
retlw '1'
retlw OxOO
retlw '0'
retlw OxOO
retlw 'I'
retlw OxOO
retlw 'n'
retlw OxOO

String6_12

end

www.manaraa.com

150

APPENDIX H: MICROCONTROLLER FIRMWARE
Usb defs.inc

Software License Agreement

The software supplied herewith by Microchip Technology Incorporated (the "Company")
for its PICmicro® Microcontroller is intended and supplied to you, the Company's
customer, for use solely and exclusively on Microchip PICmicro Microcontroller
products.

The software is owned by the Company and/or its supplier, and is protected under
applicable copyright laws. All rights are reserved. Any use in violation of the
foregoing restrictions may subject the user to criminal sanctions under applicable
laws, as well as to civil liability for the breach of the terms and conditions of
this license.

THIS SOFTWARE IS PROVIDED IN AN "AS IS" CONDITION. NO WARRANTIES, WHETHER EXPRESS,
IMPLIED OR STATUTORY, INCLUDING, BUT NOT LIMITED TO, IMPLIED WARRANTIES OF
MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE APPLY TO THIS SOFTWARE. THE
COMPANY SHALL NOT, IN ANY CIRCUMSTANCES, BE LIABLE FOR SPECIAL, INCIDENTAL OR
CONSEQUENTIAL DAMAGES, FOR ANY REASON WHATSOEVER.

filename: USB DEFS.INC

Definitions used throughout the Chapter 9 code

Author:
Company:

Revision:
Date:
Assembled using:

Dan Butler and Reston Condit
Microchip Technology Inc

1. 22
07 September 2001

MPASM 2.61

;##

include files:
none

;##
; Edit these as appropriate for your descriptors
#define NUM CONFIGURATIONS 1
#define NUM INTERFACES 1

; Define the states that the USB interface can be in
#define POWERED STATE 0x00
#define DEFAULT STATE 0x0l
#define ADDRESS STATE 0x02
#define CONFIG STATE 0x03

; Define the states for Control EndFoints
#define EP IDLE STATE 0x00
#define EP SETUP STATE 0x0l
#define EP DISABLED STATE 0xff - -

#define ENDPT DISABLED 0x00
#define ENDPT IN ONLY 0x02
#define ENDPT OUT ONLY 0x04
#define ENDPT CONTROL 0x06 enable for in, out and setup
#define ENDPT NON CONTROL 0x0E enable fcJr in, and out

#define INT STAT MASK RESET 0x0l
#define INT_STAT MASK_ERROR 0xJ2
#define INT STAT MASK TOKEN DONE 0x04

www.manaraa.com

#define INT STAT MASK SLEEP
#define INT STAT MASK STALL

#define TOKEN OUT
#define TOKEN ACK
#define TOKEN IN
#define TOKEN SETUP

(0x01<<2)
(0x02«2 I

(0x09<<2)
(0x0D<<2)

0x08
0xl0

151

#define USB Buffer 0xBS on page 3 so actu~l address 0xlBB

; offsets from the beginning of the Buffer Descriptor
#define BYTECOUNT 0x0l
#define ADDRESS 0x02

; Descriptor types
#define DEVICE 1
#define CONFIGURATION 2
#define STRING 3
#define INTERFACE 4
#define ENDPOINT 5

; offsets from the beginning of the setup data record
#define bmRequestType 0x00
#define bRequest 0x0l
#define wValue 0x02
#define wValueHigh 0x03
#define windex 0x04
#define windexHigh 0x05
#define wLength 0x06
#define wLengthHigh 0x07

#define CLEAR FEATURE 0x0l
#define GET CONFIGURATION 0x0B
#define GET DESCRIPTOR 0x06
#define GET STRING DESCRIPTOR 0x66
#define GET INTERFACE 0x0A
#define GET STATUS 0x00 -
#define SET ADDRESS 0x05
#define SET CONFIGURATION 0x09 -#define SET FEATURE 0x03
#define SET INTERFACE 0x0B
#define HID SET REPORT 0x21
#define VEND SET MEMORY 0xB0

#define SVCUSBINT 0x0l << 2
#define SVCTOKENDONE 0x02 << 2
#define SVCRESET 0x03 .,, 2
#define SVCSLEEP 0x04 << 2
#define SVCSTALL 0x05 << 2
#define SVCERROR 0x06 << 2
#define SVCACTIVITY 0x07 << 2
#define TOKENOUT 0x08 << 2
#define TOKENIN 0x09 <..: 2
#define TO!,ENSETUP 0x0A << 2
#define CLEARFEATURE 0x0B << 2
#define GETCONFIG 0x0C << 2
#define GETDESCRIPTOR 0x0D << 2
#define GET INTERFACE 0x0E << 2
#define GET STATUS 0x0F << 2
#define SETADDRESS 0xl0 << 2
#define SETCONFIG 0xll << 2
#define SET FEATURE 0x12 << 2
#define SET INTERFACE 0xl3 << 2
#define FINISHSETADDRESS 0xl4 << 2
#define COPYDESC2EP0 0xl5 << 2
#define COPYSTRINGDESC2EP0 0xl6 << 2
#define ZEROLENPACKET 0x17 << 2

COPYBUFFERDESCRIPTOR macro

www.manaraa.com

bankisel BD0OST
banksel BD0OST

USTAT,w
0xA0
FSR
STATTJS, RPO
INDF,w
BufferDescriptor
FSR,f

152

get the status register
add the offset to the beginning of the BD's
save in the FSR.
back to bank 2

in shared RAM

movf
addlw
movwf
bcf
movf
movwf
incf
movf
movwf
incf
movf
movwf
endm

INDF,w
BufferDescriptor+l
FSR,f
INDF,w
BufferDescriptor+2

Increments a
INCREMENTl 6

local
incfsz
goto
incf

endinc16
endm

REQUESTERROR
bsf
movf
addlw
movwf
bsf
bcf
endm

16bit counter,
macro index
endincl6
index,f
endinc16
index+l,f

macro
STATUS,RP0
USTAT,w
0xA0
FSR
INDF,EP STALL
STATUS,RP0

stored Lcwbyte:Highbyte

page 3
get the status register
add the offset to the beginning of the BD's

set endpoint stall bit
bacl: to page 2

~**********
wait here until the enumeration process is complete.
This is implemented as a macro to avoid chewing up another stacl: level

ConfiguredUSB macro
local enumloop
banksel USWSTAT
pagesel

enumloop
clrwdt
movlw
andwf
xorlw
btfss
goto
endm

GETEPl macro

GetEPl

enumloop

0x03
USWSTAT,w
CONFIG STATE
STATUS,Z
enumloop

clear the watch dog timer.

save lower 2 bits of USWSTAT
compare with configured state
are we configured?
nope, keep waiting ...

Enter with buffer pointer in IRP+FSR.
Checks the semaphore for the OUT endpoint, and copies the buffer
if available. Restores the bank bits as we found them.

Returns the bytecount in the W register and return status in the carry
bit as follows:
0 - no buffer available,
1 - Buffer copied and buffer made available for next transfer.

The number of bytes moved is returned in W reg.
**

GetEPl
global
local
local

GetEPl
getEPloop
exitgetloop

www.manaraa.com

local nobuffer

movf STATUS,w
banksel RP save
movwf

movf
movwf

RP save

FSR,w
dest ptr

banksel BDlOST
pagesel nobuffer

btfsc BDlOST,UOWN
goto nobuffer

movf BDlOBC,w
banksel counter
movwf counter
movwf bytecounter

pagesel exitgetloop
btfsc STATUS,Z
goto exitgetloop
banksel BDlOAL
movf BDlOAL,w
banksel source_ptr
movwf source_ptr

153

save bank bits before we trash them
switch to bank 2

save the buffer destination pointer

bank 3

Has the buffer been filled?
nope, OWN= 1 ==> SIE owns the buffer
Yep: OWN= 0 ==> PIC owns the buffer

get byte count
bank 2

of bytes that will be moved

is it a zero length buffer?
yes, bail out now and avoid the rush
bank 3
get address pointer
bank 2

This loop operates with the direct bank bits set to bank 2, while IRP
gets switched as needed to for the buffer copy

getEPloop
bsf STATUS,IRP select high banks on INDF
movf
movwf
movf
movwf

movf
movwf
btfss
bcf

source ptr,w
FSR
INDF,w
GPtemp

dest_ptr,w
FSR
RP_save,IRP
STATUS,IRP

movf GPtemp,w
movwf INDF
incf dest_ptr,f
incf source_ptr,f

pagesel getEPloop
decfsz counter,f
goto getEPloop

exitgetloop
bsf STATTJS,RP0
movf BDlOST,w
andlw 0x40
xorlw 0x40
iorlw 0x88
movwf BDlOST

movlw 0x08
movwf BDlOBC
bcf STATUS,RP0
movf bytecounter,w
movwf GPtemp
movf RP save,w -
movwf STATUS
movf GPtemp, w
bsf STATUS,C
return

nobuffer
banksel RP save

get source pointer

in corrmo~ RAM to avoid paging issues

should it be zero?
yes: make it so.
no, get the byte we read.
store it

bank 3

save only tGe data 0/1 bit
toggle the data o/1 bit
set owns bit and DTS bit

reset byte counter

bank 2
return# of bytes moved in W reg
move byte counter to temporary ram
restore bank bits

load W with the byte count
signal success

restore the bank bits

www.manaraa.com

movf.
movwf
bcf
return
endm

RP_save,w
STATUS
STATUS,C

GETEP2 macro

GetEP2

154

Enter with buffer pointer in IRP+FSR.
Checks the semaphore for the OUT endpoint, and copies the buffer
if available. Restores the bank bits as we found them.

Returns the bytecount in the W register and return status in the carry
bit as follows:
0 - no buffer available,
l - Buffer copied and buffer made available for next transfer.

The number of bytes moved is returned in W reg.
**

GetEP2
global
local
local
local

GetEP2
getEPloop2
exitgetloop2
nobuffer2

movf STATUS,w
banksel RP save
movwf

movf
movwf

RP save

FSR,w
dest_ptr

banksel BD2OST
pagesel nobuffer2

btfsc BD2OST,UOWN
goto nobuffer2

movf BD2OBC,w
banksel counter
movwf counter
movwf byte counter

pages el exi tgetloop2
btfsc STATUS,Z
goto exitgetloop2
banksel BD2OAL
movf BD2OAL,w
banksel source_ptr
movwf source_ptr

save bank bits before we trash them
switch to bank 2

save the buffer destination pointer

bank 3

Has the buffer been filled?
nope, OWN= 1 ==> SIE owns the buffer
Yep: OWN= 0 ==> PIC owns the buffer

get byte count
bank 2

of bytes that will be moved

is it a zero length buffer?
yes, bail out now and avoid the rush
bank 3
get address pointer
bank 2

This loop operates with the direct bank bits set to bank 2, while IRP
gets switched as needed to for the buffer copy

getEPloop2
bsf STATUS,IRP select high banks on INDF
movf source ptr,w -
movwf FSR
movf INDF,w
movwf GPtemp

movf dest ptr,w -
movwf FSR
btfss RP save,IRP
bcf STATUS,IRP
movf GPtemp,w
movwf INDF
incf dest_ptr,f
incf source_ptr,f

pagesel getEPloop2

get source pointer

in common RAM to avoid paging issues

should it be zero?
yes: make it so.
no, get the byte we read.
store it

www.manaraa.com

decfsz
goto

exitgetloop2

counter,f
getEPloop2

bsf STATUS,RP0
movf BD2OST,w
andlw 0x40
xorlw 0x40
iorlw 0x88
movwf BD2OST

movlw 0x08
movwf BD2OBC
bcf STATUS,RP0
movf bytecounter,w
movwf GPtemp
movf RP_save,w
movwf STATUS
movf GPtemp,w
bsf STATUS,C
return

nobuffer2
banksel RP save
movf RP_save,w
movwf STATUS
bcf STATUS,C
return
endm

PUTEPl macro

155

bank 3

save only the data 0/1 bit
toggle the data o/1 bit
set owns bit and DTS bit

reset byte counter

bank 2
return# of bytes moved in W reg
move byte counter to temporary ram
restore bank bits

load W with the byte count
signal success

restore the bank bits

**
PutEPl
Enter with bytecount in Wand buffer pointer in IRP+FSR.
the bytecount is encoded in the lower nybble of W.

Tests the owns bit for the IN side of the specified Endpoint.
If we own the buffer, the buffer pointed to by the FSR is copied
to the EPn In buffer, then the owns bit is set so the data will be
TX'd next time polled.

Returns the status in the carry bit as follows:
1 - buffer available and copied.
0 - buffer not available (try again later}
******************************~***********************************

PutEPl
global PutEPl
local putEPloop
local exitputloop
local nobufferputep

movwf GPtemp

movf STATUS,w
banksel RP save
movwf RP save

movf GPtemp,w
andlw 0x0F
movwf counter

movf FSR,w
movwf source _ptr

movf counter,w
banksel BDlIST

pagesel nobufferputepl
btfsc BDlIST,UOWN
goto nobufferputepl

save Bytecount temporarily in common RAM

save bank bits before we trash them
switch to bank 2

extract byte count.

prepare to copy the byte count
bank 3

is the buffer a!ready full?
yes - don't write over it

www.manaraa.com

movwf BDlIBC
pagesel exitputloop

btfsc STATUS,Z
goto
movf
bcf
movwf

exitputloop
BDlIAL,w
STATUS,RPO
dest ptr

This loop operates with
gets switched as needed

putEPloop
bsf STATUS,IRP
btfss RP save, IRP
bcf STATUS,IRP
movf source_ptr,w
movwf FSR
movf INDF,w
movwf GPtemp

bsf STATUS,IRP
movf dest ptr,w -
movwf FSR
movf GPtemp, w
movwf INDF

incf dest ptr,f
incf source_ptr,f

pagesel putEPloop
decfsz counter,f
goto putEPloop

exitputloop
bsf
movf
andlw
xorlw
iorlw

STATUS,RPO
BDlIST,w
Ox40
Ox40
Ox88

movwf BDlIST
banksel RP save
movf
movwf
bsf
return

RP_save,w
STATUS
STATUS,C

nobufferputepl
bcf STATUS,C
return
endm

PUTEP2 macro

156

set byte count in BD

is it a zero length buffer?
yes, bail out now and avoid the rush
get address pointer
back to bank 2

the direct bits set to bank 2,
to for the buffer copy

assume IRP is set
should it be zero?
yes: make it so.

select high banks on INDF

no, get the byte we read.
store it

back to bank 3

save only the data 0/1 bit
toggle the data o/1 bit
set owns bit and DTS bit

while IRP

restore bank bits the way we found them

set carry to show success

**
PutEP2
Enter with bytecount in Wand buffer pointer in IRP+FSR.
the bytecount is encoded in the lower nybble of W.

Tests the owns bit for the IN side of the specified Endpoint.
If we own the buffer, the buffer pointed to by the FSR is copied
to the EPn In buffer, then the owns bit is set so the data will be
TX'd next time polled.

Returns the status in the carry bit as follows:
1 - buffer available and copied.
0 - buffer not available (try again later)
**

PutEP2
global PutEP2
local putEPloop2
local exitputloop2

www.manaraa.com

local nobufferputep2

movwf GPtemp

movf STATUS,w
banksel RP save
movwf RP save

movf GPtemp,w
andlw 0x0F
movwf counter

movf FSR,w
movwf source _ptr

movf counter,w
banksel BD2IST

pagesel nobufferputep2
btfsc BD2IST,UOWN
goto nobufferputep2

movwf BD2IBC
pagesel exitputloop2

btfsc STATUS,Z
goto
movf
bcf
movwf

exitputloop2
BD2IAL,w
STATUS,RP0
dest_ptr

157

save Bytecount temporarily in common RAM

save bank bits before we trash them
switch to bank 2

extract byte count.

prepare to copy the byte count
bank 3

is the buffer already full?
yes - don't write over it

set byte count in BD

is it a zero length buffer?
yes, bail out now and avoid the rush
get address pointer
back to bank 2

This loop operates with the direct bits set to bank 2, while IRP
gets switched as needed to for the buffer copy

putEPloop2
bsf
btfss
bcf
movf
movwf
movf
movwf

bsf
movf
movwf
movf
movwf

incf

STATUS,IRP
RP save, IRP -
STATUS,IRP
source ptr,w -
FSR
INDF,w
GPtemp

STATUS,IRP
dest _ptr,w
FSR
GPtemp,w
INDF

dest ptr,f -
incf source_ptr,f

pagesel putEPloop2
decfsz counter,f
goto putEPloop2

exitputloop2
bsf STATUS,RP0
movf BD2IST,w
andlw 0x40
xorlw 0x40
iorlw 0x88
movwf BD2IST
banksel RP save
movf RP save,w
movwf STATUS
bsf STATUS,C
return

nobufferputep2
bcf STATUS,C
return
end

assume IRP is set
should it be zero?
yes: make it so.

select high banks on INDF

no, get the byte we read.
store it

back to bank 3

save only the data 0/1 bit
toggle the data oil bit
set owns bit and DTS bit

restore bank bits the way we found them

set carry to show success

www.manaraa.com

158

APPENDIX I· MICROCONTROLLER FIRMWARE
PIC16C745.lkr

II File: 16c745.lkr
II Sample linker command file for 16C765, 16C745

LIBPATH

CODEPAGE NAME=vectors START=0x0 END=0x3F PROTECTED

CODEPAGE NAME=page0 START=0x40 END=0x7FF
CODEPAGE NAME=pagel START=0x800 END=0,:FFF
CODEPAGE NAME=page2 START=0xl000 END=0x17FF
CODEPAGE NAME=page3 START=0x1800 END=0xlFFF
CODEPAGE NAME=.idlocs START=0x2000 END=0x2003
CODEPAGE NAME=.config START=0x2007 END=0x2007

SHAREBANK NAME=gprnobnk START=0x70 END=0x7F
SHAREBANK NAME=gprnobnk START=0xF0 END=0xFF
SHAREBANK NAME=gprnobnk START=0x170 END=0x17F
SHAREBANK NAME=gprnobnk START=0xlF0 END=0xlFF

DATABANK NAME=gpr0 START=0x20 END=0x6F
DATABANK NAME=gprl START=0xA0 END=0xEF
DATABANK NAME=gpr2 START=0xl20 END=0xl6F
DATABANK NAME=gpr3 START=0xl90 END=0xlEF

DATABANK NAME=sfr0 START=0x0 END=0xlF PROTECTED
DATABANK NAME=sfrl START=0x80 END=0x9F PROTECTED
DATABANK NAME=sfr2 START=0xl00 END=0xllF PROTECTED
DATABANK NAME=sfr3 START=0xl80 END=0xl8F PROTECTED

SECTION NAME=STARTUP ROM=vectors II Reset and interrupt vectors
SECTION NAME=PROGl ROM=page0 II ROM code space - page0
SECTION NAME=PROG2 ROM=pagel II ROM code space - pagel
SECTION NAME=PROG3 ROM=page2 II ROM code space - page2
SECTION NAME=PROG4 ROM=page3 II ROM code space - page3
SECTION NAME=IDLOCS ROM=.idlocs II ID locations
SECTION NAME=CONFIG ROM=.config II Configuration bits location
SECTION NAME=bank0 RAM=gpr0
SECTION NAME=bankl RAM=gprl
SECTION NAME=bank2 RAM=gpr2
SECTION NAME=unbanked RAM=gprnobnk II unbanked RAM - last 16bytes of each bank

www.manaraa.com

159

REFERENCE LIST

[l] Kohn, James. The Ergonomic Casebook: Real World
Solutions. Boca Raton, FL: CRC Press, 1997.

[2] Peterson, Baird and Richard Patten. The Ergonomic PC:
Creating A Healthy Computing Environment. New York City:
McGraw Hill, 1995.

[3] Grandjean, Etienne. Fitting The Task To The Man: An
Ergonomic Approach. London: Taylor & Francis, 1969.

[4] Weimer, Jon. Handbook Of Ergonomic And Human Factors
Tables. Englewood Cliffs, NJ; PTR Prentice Hall, 1993.

[5] Smith, Wanda. ISO And ANSI Ergonomic Standards For
Computer Products: A Guide To Implementation And
Compliance. Upper Saddle River, NJ: PTR Prentice Hall,
1996.

[6] Grogono, Peter. Mouse, A Language For Microcomputers. New
York City: Petrocelli Books, 1983.

[7] Brain, Marshall. How Computer Mice Work. Available:
http://www.howstuffworks.com/mouse.htm.

[8] Goy, Carl. Input Devices: Mice. Ed. Sol Sherr. San Diego:
Academic Press Inc., 1988.

[9] Tandeske, Duane. Pressure Sensors: Selection And
Application. New York City: Marcel Dekker Inc., 1991.

[10] Beckwith, Thomas G., Roy D. Marangoni, and John H.
Lienhard V. Mechanical Measurements. 5th ed. New York
City: Addison-Wesley Publishing Company Inc., 1995.

[11] Bell, David A. Operational Amplifiers: Applications,
Troubleshooting, and Design. Englewood Cliffs, NJ:
Prentice Hall Inc., 1990.

[12] Tekscan Inc. Flexiforce Sensors. Available: http://www.
tekscan.com/flexiforce.html

[13] Iovine, John. PIC Microcontroller Project Book. New York
City: McGraw Hill Inc., 2000.

www.manaraa.com

160

[14] Katzen, Sid. The Quintessential PIC Microcontroller.
London: Springer-Verlag, 2001.

[15] Daugherty, Kevin M. Analog-To-Digital Conversion: A
Practical Approach. New York City: McGraw-Hill Inc.,
1995.

[16] Demler, Michael J. High-Speed Analog-To-Digital
Conversion. San Diego: Academic Press Inc., 1991.

[17] Pallas-Areny, Ramon, and John G. Webster. Analog Signal
Processing. New York City: John Wiley & Sons Inc., 1999.

[18] The Engineering Staff of Analog Devices Inc. Analog-To-
Digital Conversion Handbook. Ed. Daniel Sheingold. 3rd ed.
Norwood, CA: Analog Devices Inc., 1986.

[19] Axelson, Jan. USB Complete: Everything You Need To
Develop Custom USB Peripherals. Madison, WI: Lakeview
Research, 1999.

[20] Hyde, John. USB Design By Example: A Practical Guide To
Building I/O Devices. New York City: John Wiley & Sons,
1999.

[21] McDowell, Steven, and Martin D. Seyer. USB Explained.
Upper Saddle River, NJ: Prentice Hall, 1999.

[22] Anderson, Don, and Dave Dzatko. Universal Serial Bus
System Architecture. 2nd ed. Upper Saddle River, NJ:
Mindshare Inc., 2001.

[23] Bard, Chantal, Michelle Fleury and Laurette Hay.
Development Of Eye-hand Coordination Across The Life
Span. Columbia, SC: University of South Carolina Press,
1990.

[24] Sutcliffe, Alistair. Human-Computer Interface Design.
London: MacMillan Education Ltd., 1988.

www.manaraa.com

161

VITA

NAME OF AUTHOR: Mohd Rapid Arifin

DATE AND PLACE OF BIRTH: October 11, 1978,
Pontian, Johor, MALAYSIA

DEGREES AWARDED:
A.A.Din Engineering, Unitek College of Malaysia, 1997
B.S in Mechanical Engineering, Iowa State University,

2000
M.S in Mechanical Engineering, Iowa State University,

2002

HONORS AND AWARDS:
High School Academic Outstanding Student Award

(Chemistry), 1995
College/University Scholarship Award from Malaysian

Government, 1996
Unitek College of Malaysia Dean's List, 1996-1997,
Iowa State University Dean's List, 1999 & 2000

PROFESSIONAL EXPERIENCE:
Research Assistant, Department of Mechanical Engineering,

Iowa State University, 2000-2002
Teaching Assistant, Department of Mechanical Engineering,

Iowa State University, 2002

	Computer-aided design of an ergonomic computer mouse
	Recommended Citation

	Computer-aided design of an ergonomic computer mouse

